Cho tam giác ABC có 3 góc nhọn, 3 đường cao BD,CE,AF cắt nhau tại H. Chứng minh:2<sin^2A+sin^2B+sin^2C<3
cho tam giác ABC tìm giá trị lớn nhất của biểu thức:
(sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)
Cho tam giác ABC có ba góc đèu nhọn , các đường BD và CE cắt nhau tại H . Gọi M,N,K lần lượt là trung điểm của AH,ED,BC:
a) CM : M,N,K thẳng hàng
b) Tính số đo góc MDN
c) AH cắt BC tại F . Kí hiệu S là diện tích . CM : \(\frac{S\Delta AED}{S\Delta ABC}=cos^2A\), \(\frac{SBDEC}{S\Delta ABC}=sin^2A\),\(\frac{S\Delta EDF}{S\Delta ABC}=1-cos^2A-cos^2B-cos^2C\)
d)CM : \(cos^2A+cos^2B+cos^2C< 1\), \(2< sin^2A+sin^2B+sin^2C< 3\)
Cho tam giác nhọn ABC . chứng minh rằng:
a/ \(\sin^2A+\sin^2B+\sin^2C>2\)
b/\(\cos A+\cos B+\cos C\le\frac{3}{2}\)
c/\(\cot A+\cot B+\cot C\ge\sqrt{3}\)
cho tam giác nhon ABC có S=1(đvdt).CM diện tích DEF=\(sin^2A-cos^2B-cos^2C\)
(biết AD,BE,CF là các đường cao)
Cho ∆ABC biết BC = a, AB = c, AC = b.
C/m: \(\dfrac{a}{sin 2A}\) = \(\dfrac{b}{sin 2B}\) = \(\dfrac{c}{sin 2C}\)
(Bỏ Hết Số 2 ở Mấy Cái Mẫu Nha mn, mik ghi bị lỗi á!)
Chứng minh tam giác ABC cân tại C khi và chỉ khi:
\(\frac{\cos^2A+\cos^2B}{\sin^2A+\sin^2B}=\frac{1}{2}\) (cot2A + cot2B)
a) Cho tam giác ABC có 3 góc nhọn. CMR: \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)
* Áp dụng : Cho Góc xOy =30 độ, A và B lần lượt là 2 điểm trên Ox và Oy sao cho AB=1.Tính giá trị lớn nhất của độ dài OB
b) Tam giác ABC có góc A nhọn. CMR: \(S\)của Tam giác ABC=\(\frac{1}{2}b.c.\sin A\)
* Áp dụng: Cho tam giác ABC có góc A = 40 độ, AB=4 cm, AC=7 cm. Tính S cua tam giác ABC.
Cho tam giác ABC nhọn và BC = a , CA = b , AB = c
CM:\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\)