Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nttm

Những câu hỏi liên quan
Le le
Xem chi tiết
Phạm Đoàn Văn Thọ
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 13:49

\(a,=16x^8+8x^6\\ b,=4x^4-6x^5-4x^3\\ c,=15x^6+9x^3y-10x^3y-6y^2\\ =15x^6-x^3y-6y^2\\ d,=2a^4-a^3b+6a^2b-3ab^2-3ab^2+b^3\\ =2a^4-a^3b+6a^2b-6ab^2+b^3\)

Đồng Lâm Bảo Ngọc
Xem chi tiết
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:20

a,sửa đề :  \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x^2-4}\right)\)

\(=\left(\frac{1}{\left(x+2\right)^2}-\frac{1}{\left(x-2\right)^2}\right):\left(\frac{x-2+1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\left(\frac{x^2-4x+4-x^2-4x-4}{\left(x+2\right)^2\left(x-2\right)^2}\right):\left(\frac{x-1}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{-8x\left(x+2\right)\left(x-2\right)}{\left(x+2\right)^2\left(x-2\right)^2\left(x-1\right)}=\frac{-8x}{\left(x-1\right)\left(x^2-4\right)}\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
26 tháng 6 2021 lúc 20:27

b, \(\left(\frac{2x}{2x-y}-\frac{4x^2}{4x^2+4xy+y^2}\right):\left(\frac{2x}{4x^2-y^2}+\frac{1}{y-2x}\right)\)

\(=\left(\frac{2x}{2x-y}-\frac{4x^2}{\left(2x+y\right)^2}\right):\left(\frac{2x}{\left(2x-y\right)\left(2x+y\right)}-\frac{1}{2x-y}\right)\)

\(=\left(\frac{2x\left(2x+y\right)^2-4x^2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{2x-\left(2x+y\right)}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=\left(\frac{8x^3+8x^2y+2xy^2-8x^3+4x^2y}{\left(2x-y\right)\left(2x+y\right)^2}\right):\left(\frac{-y}{\left(2x-y\right)\left(2x+y\right)}\right)\)

\(=-\left(\frac{12x^2y+xy^2}{2x+y}\right)=\frac{-12x^2y-xy^2}{2x+y}\)

Khách vãng lai đã xóa
🜲KAJIE🜲
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2023 lúc 11:02

a: \(\dfrac{x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)

\(=\dfrac{x+10}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-\left(x+10\right)}{2\left(x+2\right)}\)

b: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)

\(=\dfrac{\left(2x-1\right)\left(2x+1\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(x-2\right)}\)

\(=\dfrac{3\left(2x-1\right)\left(2x+1\right)}{2\left(x-2\right)\left(x+4\right)}\)

c: \(=\dfrac{4y^2}{7x^4}\cdot\dfrac{35x^2}{-8y}=\dfrac{5}{x^2}\cdot\dfrac{-1}{2}\cdot y=\dfrac{-5y}{2x^2}\)

d: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)

l҉o҉n҉g҉ d҉z҉
Xem chi tiết
KCLH Kedokatoji
16 tháng 8 2020 lúc 11:00

Đặt: \(\sqrt{2x+1}=a,\sqrt{3-2x}=b\)

Từ đó: \(\sqrt{4x-4x^2+3}=ab\)và \(4=a^2+b^2\)

Từ đó biến đổi và giải phương trình. Đây là một cách. (T chưa giải ra :V)

Khách vãng lai đã xóa
KCLH Kedokatoji
16 tháng 8 2020 lúc 11:10

Hoặc là không cần đặt ẩn phụ, biến đổi luôn:

VT=\(\frac{\left(2x-1\right)^2.\left(2x+1\right)\left(3-2x\right)}{\left(2x+1\right)+\left(3-2x\right)}\)

VP=\(\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{2x+1}.\sqrt{3-2x}+\left(\sqrt{2x+1}\right)^2+\left(\sqrt{3-2x}\right)^2\)

=\(\left(\sqrt{2x+1}+\sqrt{3x+2}\right)\left(\sqrt{2x+1}+\sqrt{3x+2}+1\right)\)

Đến đây có vẻ đơn giản r :>

Khách vãng lai đã xóa
Tran Le Khanh Linh
16 tháng 8 2020 lúc 17:17

\(\frac{\left(2x-1\right)^2\left(4x^2-4x+3\right)}{4}=\sqrt{2x+1}+\sqrt{3-2x}+2\sqrt{4x-4x^2}\)

\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3-2x}=\frac{\left(2x-1\right)^2}{2}\)

\(\Leftrightarrow8\left(\sqrt{2x+1}+\sqrt{3-2x}\right)=4\left(2x-1\right)^2\)

\(\Leftrightarrow8\left(\sqrt{2x+1}+\sqrt{3-2x}\right)=\left[\left(2x+1\right)-\left(3-2x\right)\right]^2\) (**)

đặt \(\hept{\begin{cases}\sqrt{2a+1}=a\ge0\\\sqrt{3-2x}=b\ge0\end{cases}}\)thì phương trình (**) trở thành

\(\hept{\begin{cases}8\left(x+b\right)=\left(a^2-b^2\right)^2\\a^2+b^2=4\end{cases}}\Leftrightarrow\hept{\begin{cases}8\left(a+b\right)=\left(a^2+b^2\right)^2-4a^2b^2\left(1\right)\\a^2+b^2=4\left(2\right)\end{cases}}\)

từ (1) \(\Rightarrow8\left(a+b\right)=16-4a^2b^2\Leftrightarrow2\left(a+b\right)=4-a^2b^2\)

\(\Leftrightarrow4\left(a^2+b^2+2ab\right)=16-8a^2b^2+a^4b^4\)(***)

đặt ab=t \(\left(0\le t\le2\right)\)thì phương trình (***) trở thành

\(16+8t=16-8t^2+t^4\Leftrightarrow t\left(t+2\right)\left(t^2-2t-4\right)=0\)

\(\begin{matrix}t=0\left(tm\right)\\t=-2\left(loại\right)\\t=1+\sqrt{5}\left(loại\right)\\t=1-\sqrt{5}\left(loại\right)\end{matrix}\)vậy t=0 \(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}+\sqrt{3-2x}=2\\\sqrt{2x+1}\cdot\sqrt{3-2x}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\)

Khách vãng lai đã xóa
🜲KAJIE🜲
Xem chi tiết
Trần Mạnh Nguyên
2 tháng 1 2023 lúc 10:06

a.(x+10) /(4*x)-8* 4 -(2*x)/x+2

-(127*x-10)/(4*x)

(5/2-127*x/4)/x

Trần Mạnh Nguyên
2 tháng 1 2023 lúc 10:07

Câu a

Nguyễn Minh Chiến
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Hồng Phúc
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hồng Phúc
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

Hoàng Việt
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:12

\(a,\Rightarrow4x^2-1-4x^2+2x=5\\ \Rightarrow2x=6\Rightarrow x=3\\ b,\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-4\right)=0\\ \Rightarrow\left(x+1\right)\left(x+2\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\)

sgfr hod
Xem chi tiết
ILoveMath
27 tháng 11 2021 lúc 20:09

ĐKXĐ:x∈R

\(\sqrt{2x^2-4x+12}=4x+8-2x^2\)

\(\Leftrightarrow2x^2-4x+12=\left(4x+8-2x^2\right)^2\)

\(\Leftrightarrow2x^2-4x+12=4x^4-16x^3-16x^2+64x+64\)

\(\Leftrightarrow4x^4-16x^3-18x^2+68x+52=0\)

\(\Leftrightarrow2x^4-8x^3-9x^2+34x+26=0\)

\(\Leftrightarrow2x^4-8x^3-9x^2+34x+26=0\)

rồi bạn phân tích đa thức thành nhân tử với nhân tử \(x^2-2x-2\) nhé

Lê Khánh Chi
12 tháng 8 2019 lúc 18:14

Please, help me