150 x \(\dfrac{1}{3}\) =
Bài 1 : Tìm x , biết :
a, \(\dfrac{-3}{x}=\dfrac{x}{-27}\) b, \(\dfrac{2}{3}\)của x là ( -150 ) c,\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x.\left(x+2\right)}=\dfrac{4}{9}\)
Bài 2 : Tính :
A = \(\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)
b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225
c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)
\(\Leftrightarrow x+2=18\)
\(\Leftrightarrow x=16\)
Bài 2:
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)
\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)
\(A=0\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)và x^2+3y^2-2^2= 150
Giải phương trình sau:
\(\dfrac{x}{50}\)+\(\dfrac{x-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0
Giải phương trình sau:
\(\dfrac{x}{50}\) +\(\dfrac{x_{ }-1}{49}\)+\(\dfrac{x-2}{48}\)+\(\dfrac{x-3}{47}\)+\(\dfrac{x-150}{25}\)= 0
⇔ \(\dfrac{\left(x-50\right)+50}{50}\)+\(\dfrac{\left(x-50\right)+49}{49}\)+\(\dfrac{\left(x-50\right)+48}{48}\)+\(\dfrac{\left(x-50\right)-100}{25}\)= 0
⇔\(\dfrac{x-50}{50}\)+ 1 + \(\dfrac{x-50}{49}\)+1+\(\dfrac{x-50}{48}\)+1+\(\dfrac{x-50}{47}\)+1+\(\dfrac{x-50}{25}\)-4 = 0
⇔\(\dfrac{x-50}{50}\)+\(\dfrac{x-50}{49}\)+\(\dfrac{x-50}{48}\)+\(\dfrac{x-50}{47}\)+\(\dfrac{x-50}{25}\)= 0
⇔ (x - 50 ) ( \(\dfrac{1}{50}\)+ \(\dfrac{1}{49}\)+\(\dfrac{1}{48}\)+\(\dfrac{1}{47}\)+\(\dfrac{1}{25}\)) = 0
⇔ x-50 =\(\dfrac{0}{\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+\dfrac{1}{47}+\dfrac{1}{25}}\)
⇔ x- 50 = 0
⇔ x = 50
vậy S = \(\left\{50\right\}\)
A= 12\(\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\)) - 3\(\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\))
B= (\(\dfrac{2}{3}\))3 : (\(\dfrac{2}{3}\))2 + (-1\(\dfrac{1}{2}\)) : 150%
\(A=12\dfrac{2}{5}.\left(\dfrac{-7}{3}\right)-3\dfrac{2}{5}.\left(\dfrac{-7}{3}\right)\)
\(A=\dfrac{62}{5}.\left(\dfrac{-7}{3}\right)-\dfrac{17}{5}.\left(\dfrac{-7}{3}\right)\)
\(A=\left(\dfrac{-7}{3}\right).\left(\dfrac{62}{5}-\dfrac{17}{5}\right)\)
\(A=\left(\dfrac{-7}{3}\right).\dfrac{45}{5}\)
\(A=-21\)
\(B=\left(\dfrac{2}{3}\right)^3:\left(\dfrac{2}{3}\right)^2+\left(-1\dfrac{1}{2}\right):150\%\)
\(B=\left(\dfrac{2}{3}\right)^1-\dfrac{3}{2}:1,5\)
\(B=\dfrac{2}{3}-\dfrac{3}{2}:\dfrac{3}{2}\)
\(B=\dfrac{2}{3}-1\)
\(B=-\dfrac{1}{3}\)
A = \(12\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\)) - \(3\dfrac{2}{5}\) . (\(\dfrac{-7}{3}\))
A = (\(\dfrac{-7}{3}\)) . ( \(12\dfrac{2}{5}\) - \(3\dfrac{2}{5}\) )
A = (\(\dfrac{-7}{3}\)) . ( \(\dfrac{62}{5}\) - \(\dfrac{17}{5}\) )
A = (\(\dfrac{-7}{3}\)) . 9
A = \(\dfrac{-7.9}{3}\)
A = \(\dfrac{-63}{3}\) = -21
B = \(\left(\dfrac{2}{3}\right)^3\) : \(\left(\dfrac{2}{3}\right)^2\) + \(\left(-1\dfrac{1}{2}\right)\) : 150 %
B = \(\left(\dfrac{2}{3}\right)^{3-2}\) + \(\dfrac{-3}{2}\) : \(\dfrac{3}{2}\)
B = \(\dfrac{2}{3}\) + -1
B = \(\dfrac{-1}{3}\)
2. tìm x
a. x+\(\dfrac{1}{3}\)=\(\dfrac{7}{26}\)
b. \(\dfrac{x}{150}\)=\(\dfrac{5}{6}\).\(\dfrac{-7}{25}\)
a)
\(x+\dfrac{1}{3}=\dfrac{7}{26}\\ x=\dfrac{7}{26}-\dfrac{1}{3}=\dfrac{21}{78}-\dfrac{26}{78}=-\dfrac{5}{78}\)
b)
\(\dfrac{x}{150}=\dfrac{5}{6}\cdot\dfrac{-7}{25}\\ \dfrac{x}{150}=\dfrac{-7}{30}\\ x\cdot30=-150\cdot7\\ x=\dfrac{-150\cdot7}{30}=-35\)
2. Chứng minh
a, \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{50^2}\) < 1
b, \(\dfrac{1}{3}\)< \(\dfrac{1}{101}\)+\(\dfrac{1}{102}\)+\(\dfrac{1}{103}\)+...+\(\dfrac{1}{150}\)< \(\dfrac{1}{2}\)
Câu b hướng làm đó là tách con 1/3 và 1/2 ra thành 50 phân số giống nhau. E tách 1/3=50/150 rồi so sánh 1/101, 1/102,...,1/149 với 1/150. Còn vế sau 1/2=50/100 tách tương tự rồi so sánh thôi
2a.
$\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}$
$=1-\frac{1}{50}< 1$ (đpcm)
2b.
Gọi tổng trên là $T$
Chứng minh vế đầu tiên:
Ta có:
$\frac{1}{101}> \frac{1}{150}$
$\frac{1}{102}> \frac{1}{150}$
....
$\frac{1}{149}> \frac{1}{150}$
$\Rightarrow T> \underbrace{\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}}_{50}=\frac{50}{150}=\frac{1}{3}$ (đpcm)
Chứng minh vế số 2:
$\frac{1}{101}< \frac{1}{100}$
$\frac{1}{102}< \frac{1}{100}$
....
$\frac{1}{150}< \frac{1}{100}$
$\Rightarrow T< \underbrace{\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}}_{50}=\frac{50}{100}=\frac{1}{2}$ (đpcm)
x : \(\dfrac{2}{3}\) = 150 \(\dfrac{35}{9}\) : x = \(\dfrac{35}{6}\)
\(\dfrac{49}{7}\) : x =\(\dfrac{49}{5}\)
1 - { 5\(\dfrac{4}{9}\) + x - 7\(\dfrac{7}{18}\) }: 15\(\dfrac{3}{4}\) = 0
1) \(x:\dfrac{2}{3}=150\)
\(\Leftrightarrow x=150.\dfrac{2}{3}\)
\(\Leftrightarrow x=100\).
2) \(\dfrac{35}{9}:x=\dfrac{35}{6}\)
\(\Leftrightarrow x=\dfrac{35}{9}:\dfrac{35}{6}\)
\(\Leftrightarrow x=\dfrac{2}{3}\).
3) \(\dfrac{49}{7}:x=\dfrac{49}{5}\)
\(\Leftrightarrow x=\dfrac{49}{7}:\dfrac{49}{5}\)
\(\Leftrightarrow x=\dfrac{5}{7}\).
4) \(1-\left\{5\dfrac{4}{9}+x-7\dfrac{7}{18}\right\}:15\dfrac{3}{5}=0\)
\(\Leftrightarrow1-\left\{\dfrac{49}{9}+x-\dfrac{133}{18}\right\}:\dfrac{78}{5}=0\)
\(\Leftrightarrow\left\{\dfrac{-35}{18}+x\right\}:\dfrac{78}{5}=1-0\)
\(\Rightarrow\dfrac{-35}{18}+x=1.\dfrac{78}{5}\)
\(\Leftrightarrow\dfrac{-35}{18}+x=\dfrac{78}{5}\)
\(\Rightarrow x=\dfrac{1579}{90}\).
Gọi a,b,c.. cho dễ nhé.Thớt vui tính quá, dấu phẩy cũng không viết hộ con dân =)))
a, \(x:\dfrac{2}{3}=150\)
\(\Leftrightarrow x=150.\dfrac{2}{3}\)
\(\Leftrightarrow x=100\)
Vậy...
b, \(\dfrac{35}{9}:x=\dfrac{35}{6}\)
\(\Leftrightarrow x=\dfrac{35}{9}:\dfrac{35}{6}\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy...
c, \(\dfrac{49}{7}:x=\dfrac{49}{5}\)
\(\Leftrightarrow x=\dfrac{49}{7}:\dfrac{49}{5}\)
\(\Leftrightarrow x=\dfrac{5}{7}\) Vậy...
d, \(1-\left\{5\dfrac{4}{9}+x-7\dfrac{7}{18}\right\}:15\dfrac{3}{4}=0\)
\(\Leftrightarrow1-\left\{\dfrac{49}{9}+x-\dfrac{133}{18}\right\}:\dfrac{63}{4}=0\)
\(\Leftrightarrow1-\left\{x-\dfrac{35}{18}\right\}:\dfrac{63}{4}=0\)
\(\Leftrightarrow1-\left(\dfrac{\left(18x-35\right).4}{18.63}\right)=0\)
\(\Leftrightarrow1-\left(\dfrac{72x-140}{1134}\right)=0\)
\(\Leftrightarrow1-\dfrac{72x-140}{1134}=0\)
\(\Leftrightarrow\dfrac{1134-72x+140}{1134}=0\)
\(\Leftrightarrow1274-72x=0\)
\(\Leftrightarrow72x=1274\)
\(\Leftrightarrow x=\dfrac{637}{36}\)
Vậy...
150 x \(\dfrac{1}{4}\)
Tam giác ABC là tam giác gì nếu A + \(\dfrac{3}{2}\) B = 150 độ và 2A + \(\dfrac{1}{2}\) B = 150 độ?
A + \(\dfrac{3}{2}\) B = 1500 ⇒ 2A + 3B = 3000
2A + \(\dfrac{1}{2}\) B = 1500
Trừ vế cho vế ta được : 3B - \(\dfrac{1}{2}\)B = 1500
⇒ B = 1500: (3 -\(\dfrac{1}{2}\))
⇒ B = 600
⇒ A = 1500 - 600 x \(\dfrac{3}{2}\)
⇒A = 600
Vậy tam giác ABC là tam giác đều