Cho biểu thức A = \(\left(\dfrac{15}{8}xy^2\right)\left(-2x^3y^2\right)^3\). Thu gọn biểu thức A; xác định hệ số và bậc của đơn thức vừa tìm được
M= \(\left(\dfrac{2}{3}xy^3\right)\).\(\left(\dfrac{3}{4}x^3y\right)\)
a) rút gọn biểu thức M
b) Chỉ rõ phần hệ số , phần biến và bậc của đơn thức sau khi thu gọn
a, \(M=\dfrac{1}{2}x^4y^4\)
b, hệ số : 1/2 ; biến x^4y^4 ; bậc 8
\(a,M=\left(\dfrac{2}{3}xy^3\right)\left(\dfrac{3}{4}x^3y\right)=\left(\dfrac{2}{3}.\dfrac{3}{4}\right)\left(x.x^3\right)\left(y^3.y\right)=\dfrac{1}{2}x^4y^4\)
b, Hệ số:\(\dfrac{1}{2}\)
Biến:x4y4
Bậc:8
BT16: Cho đơn thức \(F=\left(-\dfrac{3}{5}xy^2\right)^2.\left(\dfrac{20}{27}x^3y\right)\)
a, Thu gọn đơn thức và tìm bậc của đơn thức F
b, Tính giá trị của biểu thức F biết \(y=-\dfrac{x}{3}\)và x+y=2
a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5
Bậc: 10
b: y=-x/3 và x+y=2
=>x+y=2 và -1/3x-y=0
=>x=3 và y=-1
Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5
Cho đơn thức
A = \(\left(\dfrac{-3}{8}x^2y\right).\left(\dfrac{2}{3}xy^2.2^2\right).\left(\dfrac{4}{5}x^3y\right)\)
a) Thu gọn đơn thức
b)Xác định hệ số , phần biến của đơn thức A
\(a,A=\left(\dfrac{-3}{8}x^2y\right)\left(\dfrac{2}{3}xy^2z^2\right)\left(\dfrac{4}{5}x^3y\right)\\ =\left(\dfrac{-3}{8}.\dfrac{2}{3}.\dfrac{4}{5}\right)\left(x^2.x.x^3\right)\left(y.y^2.y\right).z^2\\ =\dfrac{-1}{5}x^6y^4z^2\)
b, Hệ số: \(-\dfrac{1}{5}\)
Biến: \(x^6y^4z^2\)
c, Bậc: 12
d,Thay x=-1, y=-2, z=3 vào A ta có:
\(A=\dfrac{-1}{5}x^6y^4z^2=\dfrac{-1}{5}.\left(-1\right)^2.\left(-2\right)^4.3^2=\dfrac{-1}{5}.1.16.9=\dfrac{-144}{5}\)
BT20: Cho đơn thức \(B=\left(-\dfrac{1}{2}xy^3\right)\left(2x^3y\right)^2\)
a, Thu gọn đơn thức B
b, Tính giá trị của B khi \(x=2,y=\dfrac{1}{2}\)
\(a,B=\left(-\dfrac{1}{2}xy^3\right)\left(2x^3y\right)^2\)
\(=\left(-\dfrac{1}{2}.4\right)\left(x.x^6\right)\left(y^3.y^2\right)\)
\(=-2x^7y^6\)
\(b,x=2,y=\dfrac{1}{2}\Rightarrow B=-2.2^7.\dfrac{1}{2}^6=-4\)
\(a,B=\left(-\dfrac{1}{2}xy^3\right).\left(2x^3y\right)^2\\ =\left(-\dfrac{1}{2}\right).4.x.x^6.y^3.y^2\\ =-2x^7y^5\)
b, Thay \(x=2;y=\dfrac{1}{2}\) vào B
\(B=\left(-2\right).2^7.\left(\dfrac{1}{2}\right)^5=-8\)
Rút gọn biểu thức:
\(\left(\dfrac{y}{xy-2x^2}-\dfrac{2}{y^2+y-2xy-2x}\right)\left(1+\dfrac{3y+y^2}{3+y}\right)\)
Rút gọn biểu thức:
\(\left(\dfrac{y}{xy-2x^2}-\dfrac{2}{y^2+y-2xy-2x}\right)\left(1+\dfrac{3y+y^2}{3+y}\right)\)
\(=\left(\dfrac{y}{x\left(y-2x\right)}-\dfrac{2}{y\left(y+1\right)-2x\left(y+1\right)}\right)\cdot\left(1+y\right)\)
\(=\left(\dfrac{y}{x\left(y-2x\right)}-\dfrac{2}{\left(y+1\right)\left(y-2x\right)}\right)\cdot\left(y+1\right)\)
\(=\left(\dfrac{y\left(y+1\right)-2x}{x\left(y-2x\right)\left(y+1\right)}\right)\cdot\dfrac{y+1}{1}\)
\(=\dfrac{y^2+2y-2x}{x\left(y-2x\right)}\)
Tìm tập xác định của biểu thức, rút gọn biểu thức, rồi tính giá trị của biểu thức với x = \(\dfrac{1}{3}\) , y = -2:
[\(\dfrac{2x}{2x-3y}\) - \(\dfrac{9y^2\left(3y+4x\right)}{8x^3-37y^3}\) - \(\dfrac{24xy}{4x^2+6xy+9y^2}\)][2x + \(\dfrac{3y\left(3y+4x\right)}{2x-3y}\)]
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
Thu gọn đa thức rồi tính giá trị của biểu thức M tại x=-2 và y =\(\dfrac{1}{2}\)
M=\(3\left(2x^3-xy^2+1\right)-4x\left(-x^2-3y^2\right)+7\)
M=\(6x^3-3xy^2+3+4x^3+12xy^2+7\)
=\(\left(6x^3+4x^3\right)-\left(3xy^2-12xy^2\right)+3+7\)
=\(10x^3+9xy^2+10\)
Thay x=-2,y=1/2 vào M:
\(10\cdot\left(-2\right)^3+9\cdot-2\cdot\left(\dfrac{1}{2}\right)^2+10\)
=10*-8+-18*1/4+10
=-80+-4.5+10
=-74.5
\(M=3\left(2x^3-xy^2+1\right)-4x\left(-x^2-3y^2\right)+7\)
\(M=6x^3-3xy^2+3+4x^3+12xy^2+7\)
\(M=10x^3+9xy^2+10\)
\(M=10\cdot\left(-2\right)^3+9\cdot\left(-2\right)\cdot0,5^2+7\)
\(M=-80-4,5+7\)
\(M=-74,5\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
a) Tìm x để giá trị của biểu thức biểu thức A được xác định.
b) Rút gọn A.
c) Tìm giá trị của A biết x2 + 2x = 15
d) Tìm x biết |A| > A