Tìm x không âm biết :
\(\sqrt{x}=\sqrt{5}\)
\(\sqrt{x}=0\)
Tìm số x không âm, biết:
\(\begin{array}{l}a)\sqrt x - 16 = 0;\\b)2\sqrt x = 1,5;\\c)\sqrt {x + 4} - 0,6 = 2,4\end{array}\)
\(\begin{array}{l}a)\sqrt x - 16 = 0\\\sqrt x = 16\\x = {16^2}\\x = 256\end{array}\)
Vậy x = 256
\(\begin{array}{l}b)2\sqrt x = 1,5\\\sqrt x = 1,5:2\\\sqrt x = 0.75\\x = {(0,75)^2}\\x = 0,5625\end{array}\)
Vậy x = 0,5625
\(\begin{array}{l}c)\sqrt {x + 4} - 0,6 = 2,4\\\sqrt {x + 4} = 2,4 + 0,6\\\sqrt {x + 4} = 3\\x + 4 = 9\\x = 5\end{array}\)
Vậy x = 5
Tìm x không âm ,biết:
a) \(\sqrt{x}\)=3
b)\(\sqrt{x}\)=\(\sqrt{5}\)
c) \(\sqrt{x}\)=0
d)\(\sqrt{x}\)=-2
\(\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
\(\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}=-2\Rightarrow x=\varnothing\)
a)\(\sqrt{x}=3\Rightarrow x=9\)
b)\(\sqrt{x}=\sqrt{5}\Rightarrow x=5\)
c)\(\sqrt{x}=0\Rightarrow x=0\)
d)\(\sqrt{x}=-2\Rightarrow x=4\)
tìm số x ko âm biết
a,\(\sqrt{x}=4\) c, \(\sqrt{x}=-3\) e,\(\sqrt{x}=6,25\)
b,\(\sqrt{x}=\sqrt{7}\) d, \(\sqrt{x}=0\)
a)
\(\sqrt{x}=4\Rightarrow x=4^2=16\)
c) \(x\in\varnothing\)
e) \(\sqrt{x}=6,25\Rightarrow x=\left(6,25\right)^2=39,0625\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
d) \(\sqrt{x}=0\Rightarrow x=0\)
Cách đánh đề độc lạ ghê:v
a: =>x=16
b: =>x=7
c: =>x thuộc rỗng
d: =>x=0
e: =>x=(25/4)^2=625/16
Tìm \(x\) không âm biết :
a) \(\sqrt{x}=3\)
b) \(\sqrt{x}=\sqrt{5}\)
c) \(\sqrt{x}=0\)
d) \(\sqrt{x}=-2\)
\(\sqrt{9}=3\)
\(\sqrt{25=3}\)
\(\sqrt{0}=0\)
\(-\sqrt{4}\)
a, \(\sqrt{x}\)=3 ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^{^{ }2}\)= \(^{3^2}\)
<=> x = 9
b, \(\sqrt{x}\)= \(\sqrt{5}\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x = 5
c, \(\sqrt{x}=0\) ( đkxđ : \(x\ge0\))
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x = 0
d, \(\sqrt{x}=-2\) ( đkxđ : \(x\ge0\))
vô nghiệm
Vậy k có giá trị nào của x ( tm đkxđ)
a) \(\sqrt{x}\)=3 ( ĐKXĐ: x\(\ge\)3)
<=> (\(\sqrt{x}\))2=32
<=>x=9
Vậy x=9
b)\(\sqrt{x}=\sqrt{5}\) ( ĐKXĐ : x\(\ge\)0)
<=>\(\left(\sqrt{x}\right)^2=\left(\sqrt{5}\right)^2\)
<=> x=5
Vậy x=5
c) \(\sqrt{x}=0\) (ĐKXĐ : x\(\ge\)0)
<=> \(\left(\sqrt{x}\right)^2=0^2\)
<=> x=0
Vậy x=0
d) \(\sqrt{x}=-2\) ( ĐKXĐ : x\(\ge\)0 )
<=>\(\left(\sqrt{x}\right)^2=\left(-2\right)^2\)
<=> x=4
Vậy x=4
Tìm số x không âm , biết :
a) \(\sqrt{x}\)= 15
b) \(2\sqrt{x}\)= 14
c) 2\(2\sqrt{x}\) < 4
\(a.\sqrt{x}=15\)
\(\Leftrightarrow x=15^2=225\)
\(b.2\sqrt{x}=14\)
\(\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2=49\)
\(c.22\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< \dfrac{2}{11}\)
\(\Leftrightarrow x< \left(\dfrac{2}{11}\right)^2\)
\(\Leftrightarrow x< \dfrac{4}{121}\)
Tìm số x không âm , biết :
\(\sqrt{x}\) < \(\sqrt{2}\)
tìm x không âm biết
a) \(\sqrt{x}\)> 4
b) \(\sqrt{4x}\)\(\le\)4
c) \(\sqrt{4-x}\)\(\ge\)6
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)
1) Tìm x không âm
a) 3-2\(\sqrt{8+x}\) > hoặc = 0
b) 3\(\sqrt{2x-1-3}\) < 0
2) So sánh
a) 2\(\sqrt{6}\) -3 và 1
b) 6 và 9-3\(\sqrt{2}\)
a/ x <hoac= -23/4
b/ x=2
a/ có 2xcăn6 > 2x2=4
=> 2 căn 6 > 3+1
<=> 2 căn 6 - 3 >1
b/ có 3 căn 2 > 3
=> 3 căn 2 - 9 > -6
=> 6 > 9- 3 căn 2
Tìm x ≥ 0, biết:
a) 2x-7\(\sqrt{x}\)+3=0
b) 3\(\sqrt{x}\)+5 < 6
c) x-3\(\sqrt{x}\) -10 < 0
d) x- 5\(\sqrt{x}\) +6 = 0
e) x+ 5\(\sqrt{x}\) -14 < 0
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)