Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenquocthanh
Xem chi tiết
PHẠM THỦY TIÊN
27 tháng 9 2021 lúc 19:02

Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12

Mà đoạn 2A sai nhé bạn, sửa lại:

2A = 3101−13101−1 2A=-10001

A=-10001/2

A=-5000,5

Vậy A=-5000,5

Khách vãng lai đã xóa
Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam

Phạm Thanh Thảo
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 19:35

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

Lê Thị Yến
Xem chi tiết
mikusanpai(՞•ﻌ•՞)
10 tháng 12 2020 lúc 20:40

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

3A=3+3^2+3^3+....+3^2020

3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

2A= 3^2020-1

⇒ A =( 3^2020-1):2

A=32019+1+3+32+33+...+32018

⇒A=1+3+32+...+32018+32019 

⇒3A=3×(1+3+3^2+3^3+....+3^2019)

⇒3A=3+3^2+3^3+....+3^2020

⇒3A-A=(3+3^2+3^3+....+3^2020) -(1+3+3^2+....+3^2019)

⇒2A= 3^2020-1

⇒ A =( 3^2020-1):2

Xem chi tiết
Đoàn Trần Quỳnh Hương
30 tháng 12 2022 lúc 14:53

Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;

Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.

Nguyễn Phương Maii
Xem chi tiết
Nguyễn Thị Thương Hoài
17 tháng 12 2023 lúc 18:47

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

Linh Giang Trần
Xem chi tiết
Minh Hiếu
14 tháng 10 2021 lúc 19:47

\(A=1+3+3^2+3^3+...+3^{2018}+3^{2019}\)

\(=\left(1+3\right)+3^2\left(1+3\right)+...+3^{2018}\left(1+3\right)\)

\(=\left(1+3\right)\left(1+3^2+...+3^{2018}\right)\)

\(=4\left(1+3^2+...+3^{2018}\right)\) ⋮4

⇒A⋮4

Đào Minh	Anh
Xem chi tiết
Akai Haruma
20 tháng 12 2023 lúc 19:46

Lời giải:

$A=1+3+3^2+3^3+...+3^{2021}$

$3A=3+3^2+3^3+...+3^{2022}$

$\Rightarrow 3A-A=(3+3^2+3^3+...+3^{2022}) - (1+3+3^2+3^3+...+3^{2021})$

$\Rightarrow 2A=3^{2022}-1$

$\Rightarrow A=\frac{3^{2022}-1}{2}$

$B-A=\frac{3^{2022}}{2}-\frac{3^{2022}-1}{2}=\frac{1}{2}$

Đỗ Thái Phương My
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
19 tháng 10 2023 lúc 20:22

`#3107.101107`

\(A = 1 + 3 + 3^2 + 3^3 + ... + 3^{98} + 3^{99}\)

\(A = (1 + 3) + (3^2 + 3^3) + ... + (3^{98} + 3^{99})\)

\(A = (1 + 3) + 3^2(1 + 3) + ... + 3^{98}(1 + 3)\)

\(A = (1 + 3)(1 + 3^2 + ... + 3^{98})\)

\(A = 4(1 + 3^2 + ... + 3^{98})\)

Vì \(4(1 + 3^2 + ... + 3^{98}) \) \(\vdots\) \(4\)

`\Rightarrow A \vdots 4`

Vậy, `A \vdots 4` (đpcm).

Phạm Minh Châu
19 tháng 10 2023 lúc 20:25

A = 1 + 3 + 32 + 33 + ... + 398 + 399

A = (1 + 3) + (32 + 33) + ... + (398 + 399)

A = 1. (1 + 3) + 32. (1 + 3) + ... + 398. (1 + 3)

A = 1.4 + 32.4 + ... + 398.4

A = 4. (1 + 32 + ... + 398)

⇒ A ⋮ 4

꧁︵ണâɣ✾уϮá ࿐꧂
Xem chi tiết

A=[1+3+3^2+3^3]+...+[3^2018+3^2019+3^2020+3^2021]

A=1 nhân[1+3+3^2+3^3]+...+3^2018 nhân [1+3+3^2+3^3]

A=[1+3+3^2+3^3] NHÂN[1+...+3^2018

A=40 nhân [1+...+3^2018]

=> A chia hết cho 40

Nguyễn Lê Phước Thịnh
7 tháng 1 2021 lúc 21:24