cho phương trình x^2-6x+m-2=0
a,tìm điều kiện của m để phương trình
Cho phương trình x2 - 6x + m = 0
a, Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu
b, Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn điều kiện x1 - 2x2 = m
a) Pt có hai nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m< 0\)
b) Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow36-4m\ge0\Leftrightarrow m\le9\)
Áp dụng hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
Từ (1) kết hợp với điều kiện có:\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-2x_2=m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=6-m\\x_1+x_2=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{6-m}{3}\\x_1=6-x_2=\dfrac{12+m}{3}\end{matrix}\right.\)
\(\Rightarrow x_1x_2=\dfrac{6-m}{3}.\dfrac{12+m}{3}=m\)
\(\Leftrightarrow72-15m-m^2=0\)
\(\Delta=3\sqrt{57}\)
\(\Rightarrow m=\dfrac{-15\pm3\sqrt{57}}{2}\) (thỏa mãn)
Vậy...
cho phương trình x^2-6x+m-2=0
a,giải phương trình khi m=2
b,tìm m để phương trình có nghiệm kép,tìm nghiệm đó
a) Thay m=2 vào phương trình, ta được:
\(x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình có hai nghiệm phân biệt là \(x_1=0;x_2=6\)
b) Ta có: \(\Delta=\left(-6\right)^2-4\cdot1\cdot\left(m-2\right)=36-4m+8=-4m+44\)
Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow-4m+44=0\)
\(\Leftrightarrow-4m=-44\)
hay m=11
Thay m=11 vào phương trình, ta được: \(x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
hay x=3
Cho phương trình x² + (m+1)x + m = 0
a) Giải phương trình với m = 2
b) Chứng minh phương trình luôn có nghiệm với mọi m
c) Tìm điều kiện m để phương trình có một nghiệm x=1 và tìm nghiệm còn lại
a, bạn tự giải
b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1 ; x2
c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)
Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)
hay nghiệm còn lại là -1
Cho phương trình m.x-5=0
a)Tìm điều kiện của m để phương trình đã cho là phương trình bậc nhất một ẩn
b)Giải phương trình (1) với m=1☹
\(a,đkxđ:m\ne0\)
\(b,\left(1\right)\Rightarrow1x-5=0\)
\(\Leftrightarrow x=5\)
Vậy \(S=\left\{5\right\}\)
Mọi người giả hộ em với Em tìm mãi kg ra
Cho phương trình x2+2x+2m=0
a) Tìm m để phương trình có 2 nghiệm trái dấu
b) Tìm m để phương trình có 2 nghiệm x1 , x2 thoả mã điều kiện 2x1+x2=-4
a: Để phương trình có hai nghiệm trái dấu thì 2m<0
hay m<0
b: \(\text{Δ}=2^2-4\cdot2m=-8m+4\)
Để phương trình có hai nghiệm thì -8m+4>=0
=>-8m>=-4
hay m<=1/2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x_1+x_2=-4\\x_1+x_2=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-2\\x_2=0\end{matrix}\right.\)
=>2m=0
hay m=0
Cho phương trình x2 - 6x + m = 0.
1) Với giá trị nào của m thì phương trình có 2 nghiệm trái dấu.
2) Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn điều kiện x1 - x2 = 4
1: Để phương trình có hai nghiệm trái dấu thì m<0
2: Để phương trình có hai nghiệm thì Δ>=0
=>36-4m>=0
=>m<=9
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1-x_2=4\\x_1+x_2=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=1\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=m\)
=>m=5(nhận)
Cho phương trình: \(^{x^2-2\left(m+1\right)x-\left(m+2\right)=0}\)
a) giải phương trình khi m=-2
b) tìm điều kiện của m để phương trình trên có 1 nghiệm x1=2
c) Tìm điều kiện của m để pt trên có nghiệm kép
Mong giúp đỡ
a) Thay m=-2 vào pt:
\(x^2-2.\left(-2+1\right).x-\left(-2+2\right)=0\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow x.\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Với m= -2 => S= {-2;0}
b) Để phương trình trên có 1 nghiệm x1=2:
<=> 22 -2.(m+1).2-(m+2)=0
<=> 4-4m -4 -m-2=0
<=> -5m=2
<=>m=-2/5
c) ĐK của m để pt trên có nghiệm kép:
\(\Delta'=0\\ \Leftrightarrow\left(m+1\right)^2+1.\left(m+2\right)=0\\ \Leftrightarrow m^2+3m+3=0\)
Vô nghiệm.
Câu 2 Cho phương trình 2x ^ 2 - 6x + 2m - 5 = 0 ( là tham số) a) Giải phương trình với m = 2 b) Tìm điều kiện của m để phương trình vô nghiệm? có nghiêm kịp? Có 2 nghiêm phân biệt?
a) 2x2 - 6x -1 = 0
delta phẩy = 9 + 2 = 11 = (\(\sqrt{11}\))2
x1 = \(\dfrac{3+\sqrt{11}}{2}\)
x2 = \(\dfrac{3-\sqrt{11}}{2}\)
b) xét delta phẩy có :
9 - 2.(2m-5) = 19 - 4m
+) điều kiện để phương trình vô nghiệm là 19 - 4m < 0 => m > \(\dfrac{19}{4}\)
+) điều kiện để phương trình có nghiệm kép là 19 - 4m = 0 => m = \(\dfrac{19}{4}\)
+) điều kiện để phương trình có 2 nghiệm phân biệt là 19 - 4m > 0
=> m < \(\dfrac{19}{4}\)
Cho phương trình: 3x²+7x+m=0
a) tìm m để hệ phương trình có hai nghiệm phân biệt x1;x2
b) với điều kiện ở câu b, tìm m để: -x1²-x2²=3