Giaỉ bptr sau
\(\dfrac{3x-2}{4}-x< \dfrac{x+2}{5}\)
Gỉai bptr sau:
a,\(\dfrac{x-5}{4}-\dfrac{2x-1}{2}< 3\)
b,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}>\dfrac{x\left(2x+3\right)}{2}-5\)
a: \(\Leftrightarrow x-5-2\left(2x-1\right)< 12\)
=>x-5-4x+2<12
=>-3x-3<12
=>-3x<15
hay x>-5
b: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)>10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5-20x^2-30x+100>0\)
=>-15x+83>0
hay x<83/15
Giai bptr sau
\(\dfrac{6x+5}{4}-\dfrac{x-3}{2}< \dfrac{6x-1}{3}+\dfrac{7x-1}{12}\)
Giaỉ bptr sau :
a,\(\left(x-2\right)\left(x+2\right)+4x-5\ge x^2+6\)
b,\(\left(3x-1\right)^2-9\left(x-1\right)\left(x+1\right)< 5x-2\)
a, \(x^2-4x+4x-5\ge x^2+6\Leftrightarrow-5\ge6\)
vô lí bpt vô nghiệm
b, \(9x^2-6x+1-9x^2+9< 5x-2\Leftrightarrow-6x+10< 5x-2\)
\(\Leftrightarrow-11x< -12\Leftrightarrow x>\dfrac{12}{11}\)
Giari bptr sau
\(\dfrac{7x-1}{6}+2x\ge\dfrac{16-x}{5}\)
Giaỉ phương trình sau :
\(\dfrac{180}{x-4}-\dfrac{180}{x}=\dfrac{1}{2}\)
\(\dfrac{180}{x-4}-\dfrac{180}{x}=\dfrac{1}{2}\)
\(\Leftrightarrow\) \(\dfrac{2x\cdot180}{2x\left(x-4\right)}-\dfrac{2\cdot180\cdot\left(x-4\right)}{2x\left(x-4\right)}=0\)
\(\Leftrightarrow\) \(\dfrac{360x-360x+1440-x^2+4x}{2x\left(x-4\right)}=0\)
\(\Leftrightarrow\) \(\dfrac{-x^2+4x+1440}{2x\left(x-4\right)}=0\)
\(\Leftrightarrow-x^2+4x+1440=0\)
\(\Leftrightarrow-x^2+40x-36x+1440=0\)
\(\Leftrightarrow-x\cdot\left(x-40\right)\cdot\left(-36\right)\cdot\left(x-40\right)=0\)
\(\Leftrightarrow\left(x-40\right)\cdot\left(x-36\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-40=0\\x+36=0\end{matrix}\right.\)
\(x-40=0\)
\(x=0+40\)
\(x=40\)
\(x+36=0\)
\(x=0-36\)
\(x=-36\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-36\end{matrix}\right.\)
\(180\left(\dfrac{1}{x-4}-\dfrac{1}{x}\right)=\dfrac{1}{2}\)
\(\dfrac{1}{x-4}-\dfrac{1}{x}=\dfrac{1}{360}\left(đk:x\ne0,4\right)\)
\(\dfrac{x-x+4}{x\left(x-4\right)}=\dfrac{1}{360}\)
\(\dfrac{4}{x\left(x-4\right)}=\dfrac{1}{360}\)
\(x^2-4x=1440\)
\(x^2-4x+4=1444\)
\(\left(x-2\right)^2=1444=38^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=38\\x-2=-38\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=40\\x=-36\end{matrix}\right.\)
Giaỉ phương trình sau :
\(\dfrac{x+5}{x-1}-\dfrac{x+1}{x-3}=\dfrac{8}{x^2+4x+3}\)
Giaỉ PT
a/\(\dfrac{5\left(x-3\right)}{2}-\dfrac{4}{3}=\dfrac{3\left(x-1\right)}{4}+6\)
b/\(\dfrac{4}{2x-3}=\dfrac{1}{x+5}\)
a: \(\Leftrightarrow30\left(x-3\right)-16=9\left(x-1\right)+72\)
\(\Leftrightarrow30x-90-16=9x-9+72\)
=>30x-106=9x+63
=>21x=169
hay x=169/21
b: =>4x+20=2x-3
=>2x=-23
hay x=-23/2
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{2}{3}\\\dfrac{1}{4x}+\dfrac{1}{3x}=\dfrac{1}{5}\end{matrix}\right.\)
Giaỉ hệ phương trình này giúp mình vs ạ
Đặt 1/x=a; 1/y=b
Hệ phương trình trở thành:
\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\\dfrac{1}{4}a+\dfrac{1}{3}b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=2\\15a+20b=12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15b+15b=30\\15b+20b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-5b=18\\a+b=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-\dfrac{18}{5}\\a=\dfrac{64}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{18}\\y=\dfrac{15}{64}\end{matrix}\right.\)
\(\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x-4}-\dfrac{12x-1}{4-4x}\)
Giaỉ phương trình sau:
\(\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x-4}-\dfrac{12x-1}{4-4x}\) Đkxđ : x≠1,-1
\(\Leftrightarrow\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x-4}+\dfrac{12x-1}{4x-4}\)
\(\Leftrightarrow\dfrac{6}{x^2-1}+5=\dfrac{20x-2}{4x-4}\)
\(\Leftrightarrow\dfrac{5x^2+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{10x-1}{2\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{5x^2+1}{\left(x+1\right)\left(x-1\right)}-\dfrac{10x-1}{2\left(x-1\right)}=0\)
\(\Leftrightarrow\dfrac{1-9x}{2\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow1-9x=0\)
\(\Leftrightarrow9x=1\)
\(\Leftrightarrow x=\dfrac{1}{9}\)
Vậy S=\(\left\{\dfrac{1}{9}\right\}\)