\(\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x-4}-\dfrac{12x-1}{4-4x}\) Đkxđ : x≠1,-1
\(\Leftrightarrow\dfrac{6}{x^2-1}+5=\dfrac{8x-1}{4x-4}+\dfrac{12x-1}{4x-4}\)
\(\Leftrightarrow\dfrac{6}{x^2-1}+5=\dfrac{20x-2}{4x-4}\)
\(\Leftrightarrow\dfrac{5x^2+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{10x-1}{2\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{5x^2+1}{\left(x+1\right)\left(x-1\right)}-\dfrac{10x-1}{2\left(x-1\right)}=0\)
\(\Leftrightarrow\dfrac{1-9x}{2\left(x+1\right)\left(x-1\right)}=0\)
\(\Leftrightarrow1-9x=0\)
\(\Leftrightarrow9x=1\)
\(\Leftrightarrow x=\dfrac{1}{9}\)
Vậy S=\(\left\{\dfrac{1}{9}\right\}\)