1/2 = x+1/3x
tim x
1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
hay x=1(loại)
Vậy: \(S=\varnothing\)
2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)
\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
1/x-1-x^3-x/x^2+1(x/x^2-2x+1-1/x^2-1)
[2/(x+1)^3.(1/x+1)+1/x^2+2x+1(1/x^2+1)]:x-1/x^3=x/x-1
(x/x^2-36-x-6/x^2+6x):2x-6/x^2+6x+x/6-x
giúp mik với ;-; mik cần gấp
Chứng minh đẳng thức:
a, (x^2-2x/2x^2+8-2x^2/8-4x+2x^2-x^3)(1-1/x-2/x^2)=x+1/2x
b, [2/3x-2/x+1(x+1/3x-x-1)]:x-1/x=2x/x-1
c, [2/(x+1)^3(1/x+1)+1/x^2+2x+1(1/x^2+1)]:x-1/x^3=x/x-1
giải phương trình:
a, 2x-5/x+5=3
b, 2/x-1=6/x+1
c, 2x+1/x-1=5(x-1)/x+1
d, x/x-1 - 2x/x2-1=0
e, 1/x-2 + 3=x-3/2-x
f, x+1/x-2 + x-1/x+2= 2(x2+2)/x2-4
g, x+2/x-2 + 1/x+2=x(x-5)/x2-4
h, 1/x+1 - 5/x+2=15/(x+1)(2-x)
i, x-1/x+2 - x/x-2= 5x-2/4-x2
a,\(2x-5=3x+15\)
\(3x-2x=-5-15\)
\(x=-20\)
b,\(\frac{2}{x-1}=\frac{6}{x+1}\)
\(2x+2=6x-6\)
\(4x=8\)
\(x=2\)
\(\frac{2x+1}{x-1}=\frac{5.\left(x-1\right)}{x+1}\)
\(\frac{2x+1}{x-1}=\frac{5x-5}{x+1}\)
\(2x^2+3x+1=5x^2-10+5\)
\(3x^2-3x=10-5+1=6\)
\(3x.\left(x-1\right)=6\)
\(x.\left(x-1\right)=3\)
Lập bảng
$$ \frac{x^4-(x-1)^2}{(x^2+1)^2-x^2}+\frac{x^2-(x^2-1)^2}{x^2*(x+1)^2-1}+\frac{x^2*(x-1)^2-1}{x^4-(x+1)^2} $$
Giải phương trình:
A) 1-x/x+1 +3 = 2x+3/x+1
B) (x+2)^2/2x-3 -1 = x^2-10/2x-3
C) 5x-2/2-2x + 2x-1/2 = 1 + x^2+x-3/x-1
D) 5-2x/3 - (x-1)(x+1)/1-3x = (x+2)(1-3x)/9x-3
E) x-3/x-2 + x-2/x-4 = -1
F) 1 + x/3-x = 5/(x+2)(3-x) + 2/x+2
G) x+1/x-1 - x-1/x+1 = 3x( 1 - x-1/x+1 )
H) 1-6x/x-2 + 9x-4/x+2 = x(3x-2)+1/x^2-4
I) 3x-1/x-1 - 2x+5/x+3 + 4/x^2+2x-3 = 1
\(\frac{1-x}{1+x}+3=\frac{2x+3}{x+1}\left(ĐKXĐ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x}{x+1}+\frac{3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3\left(x+1\right)=2x+3\)
\(\Leftrightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow2x+4=2x+3\)
\(\Leftrightarrow0x=-1\)(vô nghiệm)
Vậy phương trình vô nghiệm.
\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\left(ĐKXĐ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{x^2+4x+4}{2x-3}-\frac{2x-3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow2x+7=-10\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(thỏa mãn ĐKXĐ)
Vậy phương trình có nghiệm duy nhất : \(x=\frac{-17}{2}\)
Trả lời:
a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)\(\left(đkxđ:x\ne-1\right)\)
\(\Leftrightarrow\frac{1-x+3\left(x+1\right)}{x+1}=\frac{2x+3}{x+1}\)
\(\Rightarrow1-x+3x+3=2x+3\)
\(\Leftrightarrow4+2x=2x+3\)
\(\Leftrightarrow2x-2x=3-4\)
\(\Leftrightarrow0x=-1\)(không thỏa mãn)
Vậy \(S=\varnothing\)
b, \(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2-10}{2x-3}\)\(\left(đkxđ:x\ne\frac{3}{2}\right)\)
\(\Leftrightarrow\frac{\left(x+2\right)^2-\left(2x-3\right)}{2x-3}=\frac{x^2-10}{2x-3}\)
\(\Rightarrow x^2+4x+4-2x+3=x^2-10\)
\(\Leftrightarrow x^2+2x+7=x^2-10\)
\(\Leftrightarrow x^2+2x-x^2=-10-7\)
\(\Leftrightarrow2x=-17\)
\(\Leftrightarrow x=\frac{-17}{2}\)(tm)
Vậy \(S=\left\{\frac{-17}{2}\right\}\)
c, \(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)\(\left(đkxđ:x\ne1\right)\)
\(\Leftrightarrow\frac{2-5x}{2x-2}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)
\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{2x-1}{2}=1+\frac{x^2+x-3}{x-1}\)
\(\Leftrightarrow\frac{2-5x}{2\left(x-1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{2\left(x-1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)}+\frac{2\left(x^2+x-3\right)}{2\left(x-1\right)}\)
\(\Rightarrow2-5x+2x^2-3x+1=2x-2+2x^2+2x-6\)
\(\Leftrightarrow2x^2-8x+3=2x^2+4x-8\)
\(\Leftrightarrow2x^2-8x-2x^2-4x=-8-3\)
\(\Leftrightarrow-12x=-13\)
\(\Leftrightarrow x=\frac{13}{12}\)(tm)
Vậy \(S=\left\{\frac{13}{12}\right\}\)
a, (2+x/2-x - 4x^2/x^2-4 - 2-x/2+x):x^2-3x/2x^2-x^3
a, 2x-1/2x+1 :(2x-1+2-4x/2x+1)
b,(1/1-x -1) : (x- 1-2x/1-x +1)
c,(1/x + x-2/x^2 -4 -2+x/x^2+2x):(x^2+2x+1)/x^2
d,{1/x^2 + 1/y^2 + 2/ x+y.(1/x + 1/y )} : x^3+y^3/x^2+y^2
đề là thực hiện phép tính
a: \(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{2x^2-x^3}{x^2-3x}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)
\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)
b: \(=\dfrac{2x-1}{2x+1}:\left(2x-1+\dfrac{2-4x}{2x+1}\right)\)
\(=\dfrac{2x-1}{2x+1}:\dfrac{4x^2-1+2-4x}{2x+1}\)
\(=\dfrac{2x-1}{4x^2-4x+1}=\dfrac{1}{2x-1}\)
c: \(=\left(\dfrac{1}{1-x}-1\right):\left(x+1-\dfrac{2x-1}{x-1}\right)\)
\(=\dfrac{1-1+x}{1-x}:\dfrac{x^2-1-2x+1}{x-1}\)
\(=\dfrac{-x}{x-1}\cdot\dfrac{x-1}{x\left(x-2\right)}=\dfrac{-1}{x-2}\)
Giải phương trình chứa ẩn ở mẫu:
a. (x+1)/(x-2) - (x-1)(x+2) = 2(x2 + 2)/(x2 - 4)
b. (2x+1)/(x-1) = 5(x-1)/(x+1)
c. (x-1)/(x+2) - (x)/(x-2) = (5x-2)/(4 - x2)
d. (x-2)/(2+x)-(3)/(x-2)= 2(x-11)/(x2 - 2)
e. (x-1)/(x+1)-(x2 + x - 2)/(x+1)= (x+1)/(x-1) - x - 2
f. (x+1)/(x-1)-(x-1)/(x+1)=(4)/(x2 - 1)
g. (3)/4(x-5) + (15)/(50-2x2)= - (7)/6(x+5)
h. (12)/(8+x3)= 1 + (1)/(x+2)
k. (x+25)/(2x2 - 50)-(x+5)(x2 - 5x)= (5-x)(2x2 + 10x)
\(a,\frac{x+1}{x-2}-\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x^2+4}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2+2x+x+2-\left(x^2-2x-x+2\right)=2x^2+4\)
\(\Leftrightarrow x^2+3x+2-x^2+2x+x-2=2x^2+4\)
\(\Leftrightarrow6x=2x^2+4\)
\(\Leftrightarrow2x^2+4-6x=0\)
\(\Leftrightarrow2x^2+4-6x=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
\(b,\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=5\left(x-1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2+2x+x+1=5\left(x^2-2x+1\right)\)
\(\Leftrightarrow2x^2+3x+1=5x^2-10x+5\)
\(\Leftrightarrow5x^2-2x^2-10x-3x+5-1=0\)
\(\Leftrightarrow3x^2-13x+4=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{1}{3}\end{cases}}}\)
\(c,\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)
\(\Leftrightarrow\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{2-5x}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2-5x}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-2x-x+2-x^2-2x=2-5x\)
\(\Leftrightarrow-5x+2=2-5x\)
\(\Leftrightarrow-5x+5x=2-2\)
\(\Leftrightarrow0=0\)
=>pt luôn có nghiệm với mọi x.