Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Đức Hà
Xem chi tiết
Lưu Võ Tâm Như
22 tháng 1 2022 lúc 15:59

A B C M E I K

a) xét

 \(\Delta BME\text{VÀ}\Delta CMA\\ BM=CM\left(gt\right)\\ \widehat{BME}=\widehat{CMA}\\ MA=ME\left(gt\right)\\ \Delta BME=\Delta CMA\left(c-g-c\right)\Rightarrow BE=AC\\ \widehat{EMB}=\widehat{ACM}\left(\text{MÀ Ở VỊ TRÍ SO LE TRONG}\right)\\ \Rightarrow AC\text{//}BE\)

:V lười gõ tiếp quá ;-;

mà bạn cho mình hỏi. =) mình thấy bạn đăng toàn câu hỏi nâng cao bạn đang thi HSG hả ;-; mình 24/1 thi rồi =) không biết bạn có thi không =))) 

Minh Đại
17 tháng 4 2022 lúc 17:54

a, xét tam giác MAC và tâm giác MEB 

có{ME=MA(gt);BM=MC;tam giác MAC= tam giác MEB(c-g-c)

=> AC = EB=>EMB^=ACM^( mà ở vị trí so le trong)

=> AC// BE

b, Xét tam giác AIM và tam giác KME

có { AI=KE(gt);M3^=M4^; AM=ME(gt)

=> tam giác AIM= tam giác KME(c-g-c)

=> IM=MK

=> I,M,K thẳng hàng

c, ta có : tam giác HEB 

có { H^ =90°;B^ =50°;MEB^=25°

=> H^ + B^ + MEB^ +HEM^ =180° 

=> 90°+50°+25°+HEM^ =180°

=> HEM^ =180°-90°-50°-25°

=> HEM^=15°

lại có tam giác BME

{B^=50°;E^=25°

=> B^+E^+BME^= 180°

=> BME^ = 180° -25°-50°

=> BME^ =105°

Lê Thị Minh Thư
Xem chi tiết
Minh Hiếu
18 tháng 2 2022 lúc 20:43

Xét tam giác MAC và tam giác MEB có:

\(\left\{{}\begin{matrix}ME=MA\\\text{^}AMC=\text{^EMB }\\MB=MC\end{matrix}\right.\) 

⇒  tam giác MAC = tam giác MEB (c.g.c)

⇒ \(AC=EB\left(tươngứng\right)\)

Lâm Bảo Trân
Xem chi tiết

undefined

Hơi khó nhìn,nếu bạn không hiểu phần nào bạn hỏi mình nhé.Nếu bạn có ý kiến gì về bài giải và phương pháp giải của mình bạn có thể hỏi mình nha.Mình sẽ trả lời bạn.

undefinedundefined

Pham thi thu ngan
Xem chi tiết
H9ô H
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 7:42

b: Xét tứ giác ABEC có

M là trung điểm của AE

M là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

H9ô H
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 7:47

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

Nguyễn Hoàng Minh
11 tháng 12 2021 lúc 7:49

\(a,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMC}=\widehat{BME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta EMB\left(c.g.c\right)\\ b,\left\{{}\begin{matrix}AM=ME\\BM=MC\\\widehat{AMB}=\widehat{CME}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\\ \Rightarrow\widehat{MAB}=\widehat{MEC}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}EC\\ c,\left\{{}\begin{matrix}\widehat{MAI}=\widehat{MEK}\\AM=ME\\KE=AI\end{matrix}\right.\Rightarrow\Delta AMI=\Delta EMK\left(c.g.c\right)\\ \Rightarrow\widehat{AMI}=\widehat{EMK}\\ \text{Mà 2 góc này ở vị trí đối đỉnh và }A,M,E\text{ thẳng hàng nên }I,M,K\text{ thẳng hàng}\)

Pham thi thu ngan
Xem chi tiết
Pham thi thu ngan
Xem chi tiết
Pham thi thu ngan
Xem chi tiết