Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Tử Nhi
Xem chi tiết
Vũ Như Quỳnh
16 tháng 4 2018 lúc 20:40

HÌNH BẠN TỰ VẼ NHAhihi

a, Xét ΔABD=ΔEBD có:

BD chung

góc ABD=EBD

góc BAD=BED = 90 độ

=> ΔABD=ΔEBD ( cạnh huyền-góc nhọn)

b, ΔABD=ΔEBD => AB=EB

Xét ΔABI=ΔEBI có:

AB=EB

góc ABI=EBI

BI chung

=> ΔABI=ΔEBI ( c.g.c)

c. Có BC=BE+ EC

=> 10=BE+4

=> BE=6

mà BE=AB =6 cm

Xét tam giác ABC có:

\(BC^2=AB^2+AC^2\)

=> \(10^2=6^2+AC^2\)

=> \(AC^2=10^2-6^2\)

=> \(AC^2=64\)

=> AC=8

d, ΔABD=ΔEBD => ED=AD

Xét tam giác EDC vuông tại E => DC>DE

mà DE=AD

=> DC>AD

Ngô Thị Thanh Hà
Xem chi tiết
Hoàng Quỳnh Như
Xem chi tiết
Nguyễn Bảo Anh
Xem chi tiết
Nguyễn Thị Bích Thủy
6 tháng 2 2018 lúc 19:58

A B C M N E D Hình minh họa
Chứng minh :
a) Có △ABC cân tại A \(\Rightarrow AB=AC\left(t\text{/c }t\text{/g cân}\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(t\text{/c t/g cân}\right)\)
Xét △BEC vuông tại E và △CDB vuông tại D có:
BC - cạnh chung
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △BEC = △CDB ( cạnh huyền - góc nhọn )
⇒ EC = DB ( tương ứng )
b) Xét △AEC vuông tại E và △ADB vuông tại D có:
EC = DB ( cmt )
AC = AB ( cmt )
⇒ △AEC = △ADB ( cạnh huyền - cạnh góc vuông )
⇒ AE = AD ( tương ứng )
*) Có AC + CN = AN
AB + BM = AM
Mà AC = AB ( cmt ) ; CN = BM ( gt )
⇒ AN = AM
Xét △ANE và △AMD có:
AN = AM ( cmt )
\(\widehat{BAC}-góc\text{ }chung\)
AE = AD ( cmt )
⇒ △ANE = △AMD (c.g.c)
⇒ NE = MD ( tương ứng )
Xét △ECN và △DBM có:
EC = DB ( cmt )
CN = BM ( gt )
EN = DM ( cmt )
⇒ △ECN = △DBM (c.c.c)
c) Có AE = AD ( cmt )
⇒ △AED cân tại A
\(\Rightarrow\widehat{AED}=\dfrac{180^o-\widehat{EAD}}{2}\)(1)
Có AN = AM ( cmt )
⇒ △AMN cân tại A
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{EAD}}{2}\)(2)
Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{AMN}\)
\(\widehat{AED}\text{ và }\widehat{AMN}\) là hai góc đồng vị
\(\Rightarrow ED\text{//}MN\) ( dấu hiệu nhận biết )

nguyen thi vang
6 tháng 2 2018 lúc 20:24

Chương II : Tam giác

Chương II : Tam giác

Chương II : Tam giác

Từ (1) và (2) => \(\widehat{AMN}=\widehat{AED}\left(=\dfrac{180^o-\widehat{MAN}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

Do đó : \(ED//MN\left(đpcm\right)\)

Phạm Thảo Vân
6 tháng 2 2018 lúc 20:33

A B C E D M N a) Xét tam giác BEC và tam giác CDB ,có :

BC : chung

góc BEC = góc CDB ( = 90o )

góc EBC = góc DCB ( gt )

=> tam giác BEC = tam giác CDB ( ch - gn )

Vậy tam giác BEC = tam giác CDB ( ch - gn )

b) Xét tam giác AEC và tam giác ADB, có :

AC = AB ( gt )

góc A : chung

góc AEC = góc ADB ( = 90o )

=> tam giác AEC = tam giác ADB ( ch - gn )

=> góc ACE = góc ABD ( hai góc tương ứng )

Ta có : góc ACE + góc ECN = 180o ; góc ABD + góc DBM = 180o ( hai góc kề bù ) mà góc ACE = góc ABD ( chứng minh trên ) => góc ECN = góc DBM

Xét tam giác ECN và tam giác DBM ,có :

CN = BM ( gt )

CE = BD ( tam giác BEC = tam giác CDB )

góc ECN = góc DBM (chứng minh trên )

=> tam giác ECN = tam giác DBM ( c-g-c )

Vậy tam giác ECN = tam giác DBM ( c-g-c )

c) Vì tam giác AEC = tam giác ADB ( chứng minh trên ) => AE = AD ( hai cạnh tương ứng ) => tam giác AED cân tại A ( tính chất tam giác cân )

Xét tam giác AED cân tại A => góc AED = góc ADE ( tính chất tam giác cân )

=> góc A + góc AED + góc ADE = 180o ( định lý tổng 3 góc trong một tam giác )

=> góc AED = góc ADE = 180o - góc A / 2 ( 1 )

Ta có : AB + BM = AM ; AC + CN = AN mà AB = AC ; BM = CN ( gt ) => AM = AN => tam giác AMN cân tại A

Xét tam giác AMN cân tại A => góc AMN = góc ANM ( tính chất tam giác cân )

=> góc A + góc AMN + góc ANM = 180o ( định lý tổng 3 góc trong một tam giác )

=> góc AMN = góc ANM = 180o - góc A / 2 ( 2 )

Từ ( 1 ) và ( 2 ) => góc AED = góc AMN mà hai góc ở vị trí đồng vị nên ED // MN ( dấu hiệu nhận biết hai đường thẳng song song )

Vậ ED // MN ( đpcm )

Bảo Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 6 2022 lúc 22:36

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó; ΔEBC=ΔDCB

b: Xét ΔECN và ΔDBM có

EC=DB

\(\widehat{ECN}=\widehat{DBM}\)

CN=BM

Do đó: ΔECN=ΔDBM

c: Xét ΔABC có AE/AB=AD/AC

nên DE//BC(1)

Xét ΔAMN có AB/BM=AC/CN

nên BC//NM(2)

Từ (1) và (2) suy ra DE//MN

Nguyễn Hoàng Hà My
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Linh Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2022 lúc 13:40

Sửa đề: Tia phân giác góc B cắt AC tại D. Tia phân giác góc C cắt AB tại E

a: Xét ΔABD và ΔACE có

góc ABD=góc ACE

AB=AC

góc A chung

Do đó: ΔABD=ΔACE
=>BD=CE

b: Xét ΔOEB và ΔODC có

góc EBO=góc DCO

EB=DC

góc OEB=góc ODC

DO đó: ΔEOB=ΔDOC

c: Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

DO đó: ΔABO=ΔACO

=>góc BAO=góc CAO

=>AO là phân giác của tia phân giác của góc BAC

thuytrung
Xem chi tiết
Ngô Ngọc Tâm Anh
17 tháng 12 2021 lúc 16:50

a) Nối A và D lại, ta đc: ΔABD & ΔADC

Ta có: D là trung điểm BC => BD=DC

Xét ΔABD & ΔADC có:

AB=AC(gt) ; BD=DC ; AD=AD

=> ΔADB = ΔADC

Tô Mì
17 tháng 12 2021 lúc 17:01

1a. Xét △ABD và △ACD có:

\(AB=BC\left(gt\right)\)

\(\hat{BAD}=\hat{CAD}\left(gt\right)\)

\(AD\) chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).

 

2a. Xét △ABD và △EBD có:

\(AB=BE\left(gt\right)\)

\(\hat{ABD}=\hat{EBD}\left(gt\right)\)

\(BD\) chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
 

b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
 

c/ Xét △ABI và △EBI có:

\(AB=BE\left(gt\right)\)

\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)

\(BI\) chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)

\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)

Vậy: \(BD\perp AE\)