Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Yến
Xem chi tiết

bạn ơi cái câu <1 số hạng cuối cùng là j thế?

Hoàng Thu Hương
Xem chi tiết
Aurora
24 tháng 3 2021 lúc 19:56

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

Tanya
Xem chi tiết
Nguyễn Chơn Nhân
4 tháng 5 2018 lúc 6:11

Ta có:

7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 => (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 và 1/61> 1/62> ... >1/79> 1/80 => (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 => 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 => ĐPCM

Nhật Linh Nguyễn
19 tháng 8 2018 lúc 8:43

Ta có : 1/41 + 1/42 + ... + 1/60 > 1/60 * 20 = 1/3 .

1/61 + 1/62 + ... + 1/80 > 1/80 * 20 = 1/4 .

1/41 + 1/42 + ... + 1/80 > 1/3 + 1/4 = 4/12 + 3/12 .

= 7/12 .

Do đó : A > 7/12 .

Vậy bài toán được chứng minh .

Bùi Khánh Ly
Xem chi tiết
Vũ Vân Anh
Xem chi tiết
ngo thi phuong
26 tháng 3 2017 lúc 13:16

Ngại làm lắm

Le Tran Bach Kha
Xem chi tiết
tthnew
2 tháng 4 2018 lúc 19:14

Sửa đề là chứng minh nha bạn.

Ta có: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{41}+\dfrac{1}{41}+\dfrac{1}{41}+...+\dfrac{1}{41}\)(40 phân số \(\dfrac{1}{41}\))

\(=\dfrac{1.40}{41}=\dfrac{40}{41}>\dfrac{7}{12}\) (*)

Từ (*) suy ra: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{7}{12}^{\left(đpcm\right)}\)

Le Tran Bach Kha
2 tháng 4 2018 lúc 19:31

đpcm là gì

Dương Đức Mạnh
Xem chi tiết
Hoang Hung Quan
24 tháng 4 2017 lúc 20:44

Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)

\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)

Nhận xét:

\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)

\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)

Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)

Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:15

Bài 2: 

b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)

hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)

Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:11

Bài 1: 

a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)

\(=75\cdot\left(-4\right)+603\)

\(=603-300=303\)

Nguyễn Lê Phước Thịnh
3 tháng 4 2021 lúc 22:13

Bài 1: 

c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)

\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 14:08

Bài 2: 

a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ

mà số nguyên tố chẵn duy nhất là 2

nên số lẻ còn lại là 599(thỏa ĐK)

Vậy: Hai số nguyên tố cần tìm là 2 và 599

HELLO^^^$$$
4 tháng 4 2021 lúc 14:48

b,Gọi ƯCLN(21n+4,14n+3)=d

21n+4⋮d ⇒42n+8⋮d

14n+3⋮d ⇒42n+9⋮d

(42n+9)-(42n+8)⋮d

1⋮d ⇒ƯCLN(21n+4,14n+3)=1

Vậy phân số 21n+4/14n+3 là phân số tối giản

 

HELLO^^^$$$
4 tháng 4 2021 lúc 15:24

c,xy-2x+5y-12=0

xy-2x+5y-12+2=0+2

xy-2x+5y-10=2

xy-2x+5y-5.2=-2

x.(y-2)+5.(y-2)=2

(y-2).(x+5)=2

Sau đó bạn tự lập bảng