Chứng minh: \(\dfrac{7}{12}< \dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}< 1\)
chứng minh rằng:\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+...........+<1
\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+\(\dfrac{1}{43}\)+..........+\(\dfrac{1}{80}\)>\(\dfrac{7}{12}\)
bạn ơi cái câu <1 số hạng cuối cùng là j thế?
a, cho A = 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 5
b, Chứng tỏ rằng :
\(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+....+\dfrac{1}{79}+\dfrac{1}{80}\) >\(\dfrac{7}{12}\)
Ta có:
A=9999931999−5555571997
A=9999931998.999993−5555571996.555557
A=(9999932)999.999993 − (5555572)998.555557
A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)
A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)
A= \(\overline{\left(...0\right)}\)
Vì A có tận cùng là 0 nên \(A⋮5\)
\(Cho:A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}\)
Chứng minh rằng : \(A>\dfrac{7}{12}\)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60 => (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60 và 1/61> 1/62> ... >1/79> 1/80 => (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12 => 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12 => ĐPCM
Ta có : 1/41 + 1/42 + ... + 1/60 > 1/60 * 20 = 1/3 .
1/61 + 1/62 + ... + 1/80 > 1/80 * 20 = 1/4 .
⇒ 1/41 + 1/42 + ... + 1/80 > 1/3 + 1/4 = 4/12 + 3/12 .
= 7/12 .
Do đó : A > 7/12 .
Vậy bài toán được chứng minh .
Chứng minh:
a. \(A=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
b.\(B=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}< \dfrac{3}{16}\)
c. \(C=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
Cho A = \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+......+\dfrac{1}{80}\)
Chứng tỏ \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
Mik sẽ tick cho ai giải nhanh , đúng và đầy đủ nhất nha !
SOS ! Help me
\(\dfrac{1}{41}\) +\(\dfrac{1}{42}\) +\(\dfrac{1}{43}\) + ... +\(\dfrac{1}{80}\) >\(\dfrac{7}{12}\) ( Tính )
Sửa đề là chứng minh nha bạn.
Ta có: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{41}+\dfrac{1}{41}+\dfrac{1}{41}+...+\dfrac{1}{41}\)(40 phân số \(\dfrac{1}{41}\))
\(=\dfrac{1.40}{41}=\dfrac{40}{41}>\dfrac{7}{12}\) (*)
Từ (*) suy ra: \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{7}{12}^{\left(đpcm\right)}\)
a,Chung to rang\(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}\)>\(\dfrac{1}{12}\)
Ai nhanh tick
Đặt \(A=\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+\dfrac{1}{44}+...+\dfrac{1}{80}\)
\(=\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}\right)\)
Nhận xét:
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}\) \(=\dfrac{1}{3}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+...+\dfrac{1}{80}>\dfrac{1}{80}+\dfrac{1}{80}+...+\dfrac{1}{80}\) \(=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}>\dfrac{1}{12}\)
Vậy \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{80}>\dfrac{1}{12}\) (Đpcm)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 1:
c) Ta có: \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Leftrightarrow3B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Leftrightarrow3B-B=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow2B=1-\dfrac{1}{3^{99}}\)
\(\Leftrightarrow B=\dfrac{3^{99}-1}{3^{99}\cdot2}\)
Bài 1:
a) Tính giá trị của biểu thức một cách hợp lí.
A=1+2-3-4+5+6-7-8+9+10-11-12+...-299-300+301+302
b) Cho A=1+4+42+43+...+499 , B=4100. Chứng minh rằng A<\(\dfrac{B}{3}\)
c) Rút gọn. B=\(\dfrac{1}{3}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{3^{99}}\)
Bài 2:
a) Tìm hai số nguyên tố có tổng của chúng bằng 601.
b) Chứng tỏ rằng \(\dfrac{21n+4}{14n+3}\) là phân số tối giản.
c) Tìm cặp số nguyên (x; y) biết: xy-2x+5y-12=0
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
c,xy-2x+5y-12=0
xy-2x+5y-12+2=0+2
xy-2x+5y-10=2
xy-2x+5y-5.2=-2
x.(y-2)+5.(y-2)=2
(y-2).(x+5)=2
Sau đó bạn tự lập bảng