Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đức Huy
Xem chi tiết
Đỗ Tuệ Lâm
6 tháng 2 2022 lúc 16:52

ta có:

\(a^5+b^5\ge a^3b^2+a^2b^3\)

\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\ge0\)

\(\Leftrightarrow a^3\left(a^2-b^2\right)+b^3\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\left(a^2-b^2\right)\ge0\)

Xét thấy:

\(a+b\ge0\)

\(\left(a^2-b^2\right)\ge0\) ( với mọi a;b thuộc R)

\(a^2-ab+b^2\ge0\) ( với mọi a;b thuộc R)

Vậy nên ...................

Phạm Tiến Đạt
Xem chi tiết
Nguyễn Hải Dương
2 tháng 5 2018 lúc 17:39

Xét \(a^5+b^5-a^3b^2-a^2b^3\)

\(=a^3\left(a+b\right)\left(a-b\right)-b^3\left(b-c\right)\left(a+b\right)\)

\(=\left(a+b\right)\left(a^4-a^3b-b^4-ab^3\right)=\left(a+b\right)a^4+\left(a^4+2a^3b+b^2a^2-2a^2a^2-2ab^3-a^3b+a^2a^2-2ab^3+b^4\right)\)\(=\left(a+b\right)\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đpcm)

P/S cchs hơi chậm nhưng dừng chửi nhá

Blue Frost
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 7 2018 lúc 13:58

Bất đẳng thức cần chứng minh tương đương với:

\(a^3b^2-a^2b^3+b^3c^2-c^3b^2+c^3a^2-c^2a^3\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b+b-a\right)\ge0\)

\(\Leftrightarrow a^2b^2\left(a-b\right)+c^2a^2\left(b-a\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(a^2b^2-c^2a^2\right)\left(a-b\right)+\left(b^2c^2-c^2a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow a^2\left(b^2-c^2\right)\left(a-b\right)+c^2\left(b^2-a^2\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a^2\left(b+c\right)-c^2\left(a+b\right)\right]\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left(a^2b+a^2c-c^2a-c^2b\right)\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow\left[a\left(ab-c^2\right)+c\left(a^2-bc\right)\right]\left(a-b\right)\left(b-c\right)\ge0\) luôn đúng do \(a\ge b\ge c\ge0\)

Blue Frost
16 tháng 7 2018 lúc 14:13

cảm ơn bạn nhá, bạn trả lời giúp mình mấy câu hỏi về BĐT còn lại của mik đc ko? cảm ơn bn nhiều!

Trung Hoàng
Xem chi tiết
coolkid
25 tháng 2 2020 lúc 21:40

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^6c^3}=3b^2c\)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^6a^3}=3c^2a\)

Cộng vế theo vế có ngay điều phải chứng minh

Khách vãng lai đã xóa
coolkid
25 tháng 2 2020 lúc 21:44

\(a^5+a^5+a^5+a^5+b^5\ge5\sqrt[5]{a^{20}b^5}=5a^4b\)

\(b^5+b^5+b^5+b^5+c^5\ge5\sqrt[5]{b^{20}c^5}=5b^4c\)

\(c^5+c^5+c^5+c^5+a^5\ge5\sqrt[5]{c^{20}a^5}=5c^4a\)

Cộng lại ta được:\(5\left(a^5+b^5+c^5\right)\ge5\left(a^4b+b^4c+c^4a\right)\)

=> đpcm

Khách vãng lai đã xóa
Phùng Minh Quân
Xem chi tiết
Nguyễn hồng vy
14 tháng 10 2018 lúc 12:45

hình như đây k phải toán lớp 1

Trần Trung Hiếu
14 tháng 10 2018 lúc 12:59

đây làm gì phải toán lớp 1 mik lớp 5 còn chẳng biết nè

Nguyễn Tất Đạt
14 tháng 10 2018 lúc 13:07

Biến đổi tương đương:

\(a^5+b^5\ge a^3b^2+a^2b^3\Leftrightarrow a^5-a^3b^2+b^5-a^2b^3\ge0\)

\(\Leftrightarrow a^3\left(a^2-b^2\right)-b^3\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)

Dễ thấy: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\a^2+ab+b^2\ge0\end{cases}\forall}a;b\); kết hợp với \(a+b\ge0\)(giả thiết)

Từ đó suy ra: \(\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)(luôn đúng \(\forall a;b\) t/m \(a+b\ge0\))

=> BĐT ban đầu đúng => \(a^5+b^5\ge a^3b^2+a^2b^3\)(đpcm)

Dấu "=" có <=> a=b=0.

☆MĭηɦღAηɦ❄
Xem chi tiết
Sooya
13 tháng 1 2018 lúc 18:04

2, - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )

= -a - b -c - b + c + a + 1 - a - b - c + 3b

= (a-a) - (b+b+b) + (c-c) + (-a) + (-c) + 3b

= 0 - 3b + 0 + (-a) + (-c) + 3b

= (3b-3b) + (-a) + (-c)

= 0 + (-a) + (-c)

= (-a) + (-c)

3, ( b - c - 6 ) - ( 7 - a + b ) + c

= b - c - 6 - 7 + a - b + c

= (b-b) + (c-c) - (6+7) + a

= 0 + 0 + 13 + a

= 13 + a

6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }

= 2a - { a - b [ a - b - a - b - c  + 2b ] - c - b }

= 2a - { a - b [ ( a - a ) - (b+b) - c + 2b ] - c - b }

= 2a - { a - b [ 0 - 0 - 2b - c + 2b ] - c - b }

= 2a - { a- b [ (2b - 2b) - c ] - c - b }

= 2a - { a - b [ 0 - c ] - c - b }

= 2a - { a - b.(-c) - c - b}

= 2a - a - b.(-c) - c - b

= 1a - (-b).c - c - b

= a - (-b).c - c.1 - b

= a - [(-b) - 1].c - b

ko chắc lắm

Văn Phúc Đạt lớp 9/7 Ngu...
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2021 lúc 22:17

Bài 1: Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\b=dk\end{matrix}\right.\)

\(\dfrac{a}{a+c}=\dfrac{ck}{ck+c}=\dfrac{ck}{c\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{b}{b+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)

Nguyễn Thị Yến Nga
Xem chi tiết
Pika_Hải
4 tháng 7 2020 lúc 10:21

Bạn có thể tham khảo: https://hoc24.vn/hoi-dap/question/236870.html
Thông tin đến bạn!

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 17:09

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)

Tương tự:

\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)

\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)