A=(x^2+5x+8)/5. Tìm gtnn của A
Tìm GTNN của biểu thức A=(2x^2+5x+8):x(với x>0)
Tìm GTNN
\(A=x^2-2x+5\)
\(B=4x^2+4x+3\)
\(C=9x^2-6x+7\)
D\(=5x^2+3x+8\)
`A=x^2-2x+5`
`=x^2-2x+1+4`
`=(x-1)^2+4>=4`
Dấu "=" `<=>x=1`
`B=4x^2+4x+3`
`=4x^2+4x+1+2`
`=(2x+1)^2+2>=2`
Dấu "=" xảy ra khi `x=-1/2`
`C=9x^2-6x+7`
`=9x^2-6x+1+6`
`=(3x-1)^2+6>=6`
Dấu '=' xảy ra khi `x=1/3`
`D=5x^2+3x+8`
`=5(x^2+3/5x)+8`
`=5(x^2+3/5x+9/100-9/100)+8`
`=5(x+3/10)^2+151/20>=151/20`
Dấu "=" xảy ra khi `x=-3/10`
\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)
\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)
\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)
Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)
\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)
Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)
- A = (x-1)2 + 4 \(\ge4\)
Dấu "=" <=> x = 1
- B = (2x+1)2 +2 \(\ge2\)
Dấu "=" xảy ra <=> x = \(\dfrac{-1}{2}\)
- C = (3x - 1)2 + 6 \(\ge6\)
Dấu "=" <=> x = \(\dfrac{1}{3}\)
- D = \(5\left(x^2+\dfrac{3}{5}x+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)
Dấu "=" <=> x = \(\dfrac{-3}{10}\)
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy
Tìm x để biểu thức có GTNN của biểu thức sau: A=x^2+5x+8
A=x2+5x+8
A=\(x^2+5x+\frac{25}{4}+\frac{7}{4}\)
\(A=x^2+\frac{5}{2}x+\frac{5}{2}x+\frac{25}{4}+\frac{7}{4}\)
\(A=x\left(x+\frac{5}{2}\right)+\frac{5}{2}\left(x+\frac{5}{2}\right)+\frac{7}{4}\)
\(A=\left(x+\frac{5}{2}\right)\left(x+\frac{5}{2}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
=>GTNN của A là 7/4
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Tìm GTNN của các biểu thức
a) 5x^2-1 b) 3(x+1)^2 -2 c) / x+5 / -3
Tìm GTLN của các biểu thức
a) 7-3x^2 b) 8-(x+2)^2 c) 10- / x + 2 /
zúp mk zới nhé
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
Tìm GTNN của
A=5+3(2x-1))2
B=8-x2/2-x2
C=27-2x/12-x
F= 31-5x/10-x
\(A=5+3\left(2x-1\right)^2\)
Vì \(\left(2x-1\right)^2\ge0\) với mọi x
=>\(5+\left(2x-1\right)^2\ge5\)
Vậy GTNN của A là 5 khi x=1/2
ai làm được các bài nữa ko ạ. mình cần gấp lắm
Tìm GTNN của
A=5+3(2x-1))2
B=8-x2/2-x2
C=27-2x/12-x
F= 31-5x/10-x
5.Tìm GTNN của biểu thức:
a) A= x2+2x+5
b) B= x2-5x+8
a: Ta có: \(A=x^2+2x+5\)
\(=x^2+2x+1+4\)
\(=\left(x+1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=-1
tìm GTNN của biểu thức sau
A=x2+5x+8
cho biết x= bao nhiêu?