\(A=\dfrac{x^2+5x+8}{5}\)
\(=\dfrac{\left(x^2+5x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}\)
\(=\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}+\dfrac{7}{20}\)
Vì \(\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}\ge0,\text{∀x}\)
⇒ \(A\ge\dfrac{7}{20},\text{∀x}\)
Min \(A=\dfrac{7}{20}\)⇔\(x=-\dfrac{5}{2}\)
\(A=\dfrac{x^2+5x+8}{5}=\dfrac{\left(x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}=\dfrac{\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}}{5}\ge\dfrac{\dfrac{7}{4}}{5}=\dfrac{7}{4}.\dfrac{1}{5}=\dfrac{7}{20}\)-GTNN của A là \(\dfrac{7}{20}\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)