Giải bpt : 3x-2<4
giải bpt 2x-x(3x+1)≤15-3x(x+2)
2x-x(3x+1)≤15-3x(x+2)
2x-3x2-x≤15-3x2 -6x
2x-3x2-x+3x2 +6x≤15
7x≤15
x≤15/7
Giải BPT
3x - 2 / 4 > 3x + 3 / 6
\(\dfrac{3x-2}{4}>\dfrac{3x+3}{6}\)
\(\Leftrightarrow3\left(3x-2\right)>2\left(3x+3\right)\)
\(\Leftrightarrow9x-6>6x+6\)
\(\Leftrightarrow9x-6x>6+6\)
\(\Leftrightarrow3x>12\)
\(\Leftrightarrow x>4\)
Vậy bất phương trình có nghiệm x > 4 .
Giải bpt: (x-3)(x+1(2-3x)>0
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)
\(x\) | \(-\infty\) \(-1\) \(\dfrac{2}{3}\) \(3\) \(+\infty\) |
\(x-3\) | - | - | - 0 - |
\(x+1\) | - 0 + | + | + |
\(2-3x\) | + | + 0 - | - |
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right).\) | + 0 - 0 + 0 + |
Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)
giải bpt \(\left|-x^2+3x-2\right|>3x^2-x-2\)
1 giải bpt \(\sqrt{6x^2-18x+12}< 3x+10-x^2\)
2 giải bpt \(\left(x-2\right)\sqrt{x^2+4}\le x^2-4\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
giải BPT : (x2 -3x)\(\sqrt{2x^2-3x-2}\ge0\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-\frac{1}{2}\end{matrix}\right.\)
- Với \(\left[{}\begin{matrix}x=2\\x=-\frac{1}{2}\end{matrix}\right.\) BPT thỏa mãn
- Với \(x\ne\left\{-\frac{1}{2};2\right\}\Rightarrow\sqrt{2x^2-3x-2}>0\) BPT tương đương:
\(x^2-3x\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le0\end{matrix}\right.\)
Kết hợp lại ta được nghiệm: \(\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge3\\x=2\end{matrix}\right.\)
Giải các bpt sau
\(x^2+3x\ge2+\sqrt{5x^2+15x+14}\)
Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)
BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)
=>\(a-2>=\sqrt{5a+14}\)
=>\(\sqrt{5a+14}< =a-2\)
=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)
=>a>=10
=>\(x^2+3x>=10\)
=>\(x^2+3x-10>=0\)
=>(x+5)(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)
Giải bpt
\(\dfrac{x+2}{3x+1}\ge\dfrac{x-2}{2x-1}\)
ĐK: \(x\ne\dfrac{1}{2};x\ne-\dfrac{1}{3}\)
\(\dfrac{x+2}{3x+1}\ge\dfrac{x-2}{2x-1}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(2x-1\right)-\left(x-2\right)\left(3x+1\right)}{\left(3x+1\right)\left(2x-1\right)}\ge0\)
\(\Leftrightarrow\dfrac{2x^2+3x-2-3x^2+5x+2}{6x^2-x-1}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+8x}{6x^2-x-1}\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+8x\ge0\\6x^2-x-1>0\end{matrix}\right.\left(1\right)\) hoặc \(\left\{{}\begin{matrix}-x^2+8x\le0\\6x^2-x-1< 0\end{matrix}\right.\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}0\le x\le8\\\left[{}\begin{matrix}x>\dfrac{1}{2}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x\le8\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le0\\x\ge8\end{matrix}\right.\\-\dfrac{1}{3}< x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{1}{3}< x\le0\)
Vậy ...
Giải bpt \(3x^2-x+1>3\sqrt{x^4-x^2+2x-1}\)
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)