giải ptr:
(2x – 3)(x + 1) + x(x – 2) = 3(x + 2)2.
giải các ptr sau
a)\(\dfrac{2-x}{2008}-1=\dfrac{1-x}{2009}-\dfrac{x}{2010}\)
b)\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\)
1 : giải ptr : \(\frac{x+2}{x-2}-\frac{2x-1}{x^2+3x+2}=\frac{5}{2}\)
2 giải ptr :
a, \(\left(x-2\right)\left(x^2+5x-7\right)=0\)
b, \(x^3+3x^2-4x-12=0\)
c, ( x+1 ) ( x+2 ) (x+4 ) ( x+5 )=40
\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\left(x+1\right)\left(x+5\right)\left(x+2\right)\left(x+4\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)
\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+5+3\right)=40\)
\(\Leftrightarrow p\left(p+3\right)=40\) (khi đặt \(\left(x^2+6x+5\right)=p\)
\(\Leftrightarrow p^2+3p=40\)
\(\Leftrightarrow p^2\cdot2\cdot p\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2=\frac{169}{4}\)
\(\Leftrightarrow\left(p+\frac{3}{2}\right)^2-\left(\frac{13}{2}\right)^2=0\)
\(\Leftrightarrow\left(p+\frac{3}{2}-\frac{13}{2}\right)\left(p+\frac{3}{2}+\frac{13}{2}\right)=0\)
\(\Leftrightarrow\left(p-5\right)\left(p+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}p=5\\p=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+5=5\\x^2+6x+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\x^2+2\cdot x\cdot3+9-9+5=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(x+3\right)^2=-4\left(\text{vôlí}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
\(\left(x-2\right)\left(x^2+5x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x^2+5x-7=0\end{cases}}\)
Ta có: \(\Delta=25-4\cdot\left(-7\right)=25+28=53\)
\(\Rightarrow\Delta>0\)
\(\Rightarrow\text{pt có 2 nghiệm pb}\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{-5-\sqrt{53}}{2}\\x_2=\frac{-5+\sqrt{53}}{2}\end{cases}}\)
\(\text{Vậy pt trên có nghiệm là x=2; x=}\frac{-5\pm\sqrt{53}}{2}\)
\(x^3+3x^2-4x-12=0\)
\(\Leftrightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
\(\text{Vậy pt có nghiệm là x=2;x=-3}\)
Giải ptr sau: 1/x+2+5/x-2=2x-12/x^2-4
ĐKXĐ: \(x\ne2;x\ne-2\)
\(\Rightarrow x-2+5\left(x+2\right)=2x-12\Leftrightarrow x-2+5x+10=2x-12\Leftrightarrow6x+8-2x=-12\Leftrightarrow4x+8=-12\Leftrightarrow4x=-20\Leftrightarrow x=-5\left(TM\right)\)
ĐKXĐ: \(x\ne\pm2\)
\(\dfrac{1}{x+2}+\dfrac{5}{x-2}=\dfrac{2x-12}{x^2-4}\)
\(\Leftrightarrow\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}+\dfrac{5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2x-12}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x-2+5x+10=2x-12\)
\(\Leftrightarrow2x-12-x+2-5x-10=0\)
\(\Leftrightarrow-4x-20=0\)
\(\Leftrightarrow-4\left(x+5\right)=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy...
Giaỉ ptr : 3-2x=3(x+1)-x-2
3 - 2x = 3(x + 1) - x - 2
⇔ 3 - 2x = 3x + 3 - x - 2
⇔ 4x = 2
⇔ x = 1/2
giải ptr
\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{x^3+3}{x^2-1}\)
ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3+3}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^3+3\)
\(\Leftrightarrow4x=x^3+3\)
\(\Leftrightarrow x^3-4x+3=0\)
\(\Leftrightarrow x^3-x^2+x^2-x-3x+3=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x^2+x-3=0\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{-1\pm\sqrt{13}}{2}\)
Giải ptr:
2(√x−1+√2x−1)=5
Giải ptr:
\(x^4-3x^3-x^2+2x-4=0\)
Lời giải:
Ta sẽ thử phân tích $x^4-3x^3-x^2+2x-4$ thành nhân tử
Đặt $x^4-3x^3-x^2+2x-4=(x^2+ax+b)(x^2+cx+d)$ với $a,b,c,d$ nguyên.
$\Leftrightarrow x^4-3x^3-x^2+2x-4=x^4+x^3(a+c)+x^2(ac+b+d)+x(ad+bc)+bd$
Đồng nhất hệ số:
\(\left\{\begin{matrix} a+c=-3\\ ac+b+d=-1\\ ad+bc=2\\ bd=-4\end{matrix}\right.\). Từ $bd=-4$ ta xét các TH nguyên của $b,d$ để thay vào tìm $a,c$
Ta tìm được $a=-2;b=-4; c=-1; d=1$
Do đó:
$x^4-3x^3-x^2+2x-4=0$
$\Leftrightarrow (x^2-2x-4)(x^2-x+1)=0$
$\Leftrightarrow x^2-2x-4=0$ (do $x^2-x+1\neq 0$)
$\Leftrightarrow x=1\pm \sqrt{5}$
giải ptr
\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{2x+1}{6}=\dfrac{x}{6}-\dfrac{6x}{6}\)
\(\Leftrightarrow2x-2x+1=x-6x\)
\(\Leftrightarrow1=-5x\)
\(\Leftrightarrow x=\dfrac{-1}{5}\)
giúp giải ptr vs
a.\(\sqrt{4x+1}-\sqrt{3x+4}=\sqrt{x-2}\)
b.\(\sqrt{x-2}-\sqrt{x+1}=\sqrt{2x-1}-\sqrt{x+3}\)
c.\(\sqrt{4x+1}-\sqrt{7+x}=2\sqrt{2x-3}+\sqrt{5-6x}\)