ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3+3}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^3+3\)
\(\Leftrightarrow4x=x^3+3\)
\(\Leftrightarrow x^3-4x+3=0\)
\(\Leftrightarrow x^3-x^2+x^2-x-3x+3=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x^2+x-3=0\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{-1\pm\sqrt{13}}{2}\)