-Tìm y
a } 4 x y : 8 = 502
b } y x 3 + 4756 + y : 2 = 7861
Tìm y
y x 3 + 4756 + y x 2 = 7861
3y+2y =7861 - 4756
5y = 3105
y = 3105/5 = 621
y x 5 + 4756 = 7861
y x 5 = 3105
y = 621
y x 3 + 4756 + y x 2 = 7861
\(y\times3+4756+y\times2=7861\)
\(y\times\left(3+2\right)=7861-4756\)
\(y\times5=3105\)
\(y=3105:5\)
\(y=621\).
y×3+4756+y×2=7861y×3+4756+y×2=7861
y×(3+2)=7861−4756y×(3+2)=7861−4756
y×5=3105y×5=3105
y=3105:5y=3105:5
y=621y=621
tìm số nguyên x,y
a\(y^2\)=3-|2x-3|
b2.\(y^2\)=3-|x+4|
c25-\(y^2\)=8.\(\left(x-2021\right)^2\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left|2x-3\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|2x-3\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}3-\left|2x-3\right|=1\\3-\left|2x-3\right|=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{1}{2}\\x=\dfrac{7}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\) (loại vì \(x;y\in Z\) )
b) \(2.y^2=3-\left|x+4\right|\)
Vì \(-\left|x+4\right|\le0\forall x\) nên \(3-\left|x+4\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow3-\left|x+4\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\) (t/m)
TH2:
\(y^2=1\)
\(\Rightarrow3-\left|x+4\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-5\end{matrix}\right.\) (t/m)
c) \(25-y^2=8.\left(x-2021\right)^2\)
Vì \(\left(x-2021\right)^2\le0\forall x\) nên \(8.\left(x-2021\right)^2\le0\forall x\) nên \(y^2\in\left\{0\right\}\) (vì \(y\in Z\) )
\(y^2=0\)
\(\Rightarrow8.\left(x-2021\right)^2=25\)
Vì \(\dfrac{25}{8}\) ko có p/s mũ 2 nên \(x\in\) ∅
Chúc bạn học tốt!
Vì -/2x-3/< 0 với mọi x nên 3-/2x-3/< 3 với mọi x -> y2< 3 -> y2 thuộc {0;1} ( vì y thuộc z)
Th1: y2=0-> y=0-> /2x-3/=3-> 2x-3=3 hoặc 2x-3=-3<-> x=0 hoặc x=3
Th2: y2=1-> y=+ 1-> /2x-3/=2-> 2x-3=2 hoặc 2x-3=-2 (loại vì x nguyên)
Câc câu còn lại bạn làm tương tự nhé
Chúc bạn học tốt!
tìm x,y
A) \(x^3+y^3=6xy-8\)
B)\(x^3-y^3=xy+8\)
C)\(x^2+xy+y^2=x^2y^2\)
Để giải phương trình này, chúng ta có thể sử dụng công thức khai triển đa thức. Với phương trình A) x^3 + y^3 = 6xy - 8, ta có thể thay thế x^3 và y^3 bằng (x + y)(x^2 - xy + y^2) và tiếp tục giải từ đó. Tương tự, chúng ta có thể áp dụng công thức khai triển đa thức cho các phương trình B) và C) để tìm giá trị của x và y.
Bài 1: Tìm x và y
a) x/4 = y/-5 và -3x + 2y = 55
b) x/y = -7/4 và 4x - 5y = 72
c) x/ -3 = y/8 và x2 - y2 = -44/5
d) 3x3 + y3 = 64/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)
⇒\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)
cho xin hỏi kết quả của bài này là gì 1:tim x/y
a)2/3 x x/y = 8/15 b)x/y : 3/4 =2/5 c)3/5 : x/y =4/7
1:tim x/y
a)2/3 x x/y = 8/15 b)x/y : 3/4 =2/5 c)3/5 : x/y =4/7
2:hình chữ nhật có diện tích 3/5 m2 và chiều rộng 3/4 m.Hãy tính chu vi hình đó
cho mình xin kết quả nhé
Bài 1:
a.
$\frac{2}{3}\times \frac{x}{y}=\frac{8}{15}$
$\frac{x}{y}=\frac{8}{15}: \frac{2}{3}=\frac{4}{5}$
b.
$\frac{x}{y}: \frac{3}{4}=\frac{2}{5}$
$\frac{x}{y}=\frac{3}{4}\times \frac{2}{5}=\frac{3}{10}$
c.
$\frac{3}{5}: \frac{x}{y}=\frac{4}{7}$
$\frac{x}{y}=\frac{3}{5}: \frac{4}{7}=\frac{21}{20}$
Bài 2:
Chiều dài hình chữ nhật là:
$\frac{3}{5}: \frac{3}{4}=\frac{4}{5}$ (m)
Chu vi hình chữ nhật:
$2\times (\frac{3}{4}+\frac{4}{5})=\frac{31}{10}$ (m)
tìm x;y
A) \(\dfrac{2}{5}x-\dfrac{1}{3}=-1\dfrac{1}{2}:\dfrac{5}{4}\)
B) x;y tỉ lệ thuận với 5 và 3 và x+y=32
c) x;y tỉ lệ nghịch với 5 và 3 và x+y = 32
tìm x,y
A) \(\dfrac{x}{y}=\dfrac{7}{4}\) và x+y=33
b) 3.(x-1)+5=-19
a,Ta có:
\(\dfrac{x}{y}=\dfrac{7}{4}=\dfrac{x}{7}=\dfrac{y}{4}\)
ÁP dụng tcdtsbn , ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=21\\y=12\end{matrix}\right.\)
b,
\(\Rightarrow3.\left(x-1\right)=-24\)
\(\Rightarrow x-1=-8\)
\(\Rightarrow x=-7\)
A)\(\dfrac{x}{y}=\dfrac{7}{4}\Rightarrow\dfrac{x}{7}=\dfrac{y}{4}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{x+y}{7+4}=\dfrac{33}{11}=3\)
\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{4}=3\Rightarrow y=12\)
B) \(3\left(x-1\right)+5=-19\\ \Rightarrow3\left(x-1\right)=-24\\ \Rightarrow x-1=-8\\ \Rightarrow x=-7\)