Chứng minh: BĐT: \(\left(a+b+c\right)^2\ge3.\left(ab+bc+ca\right)\)
chứng minh các BĐT:
a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2;\)
b)\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
a) Áp dụng Cauchy-Schwarz:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
b) Áp dụng AM-GM:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)
Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
a)2(a2+b2) ≥ (a+b)2
⇔ 2a2+2b2 ≥ a2+2ab+b2
xét hiệu
⇔ 2a2+2b2-a2-2ab-b2 ≥ 0
⇔ a2-2ab+b2 ≥ 0
⇔ (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab
\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0
\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)
(2) đúng nên 1 đúng
b )
chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2
\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0
\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0
\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng
chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)
\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0
cm như trên suy ra đpcm
Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Áp dụng BĐT Cô-si:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Other way:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(đúng)
Dấu "=" xảy ra khi a=b=c
Cho 3 số thực dương a,b,c thoả mãn: a2+b2+c2=1 .Chứng minh:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}+\dfrac{b^5+c^5}{bc\left(b+c\right)}+\dfrac{c^5+a^5}{ca\left(c+a\right)}\ge3\left(ab+bc+ca\right)-2\)
Ta chứng minh BĐT sau cho các số dương:
\(x^5+y^5\ge xy\left(x^3+y^3\right)\)
\(\Leftrightarrow x^5-x^4y+y^5-xy^4\ge0\)
\(\Leftrightarrow\left(x^4-y^4\right)\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
Áp dụng:
\(\dfrac{a^5+b^5}{ab\left(a+b\right)}\ge\dfrac{ab\left(a^3+b^3\right)}{ab\left(a+b\right)}=\dfrac{a^3+b^3}{a+b}=a^2-ab+b^2\)
Tương tự và cộng lại:
\(VT\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)=2-\left(ab+ca+ca\right)\)
\(VT\ge4-\left(ab+bc+ca\right)-2=4\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)-2\)
\(VT\ge4\left(ab+bc+ca\right)-\left(ab+bc+ca\right)-2=3\left(ab+bc+ca\right)-2\) (đpcm)
Cho a,b,c>0. Chứng minh: \(a^2+b^2+c^2\ge3\left(ab+bc+ca\right)\) và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
1 ) (a+b+c)^2 >= 3(ab+bc+ac)
<=> a^2 + b^2 + c^2 >= ab + bc + ac
<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ac
<=> a^2 - 2ab + b^2 + b^2 - 2bc + c^2 + a^2 - 2ac + c^2 >= 0
<=> (a - b)^2 + (b-c)^2 + (a-c)^2 >= 0
( luôn đúng với mọi a ; b ; c )
( đpcm )
2 ) P = \(\frac{\left(a+b+c\right)^2}{ab+bc+ac}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}+\frac{ab+bc+ac}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ac\right)}\)
AD BĐT Cô - si và BĐT phụ đã cmt ở trên ta có : \(P\ge2.\frac{1}{3}+\frac{8.3.\left(ab+bc+ac\right)}{9\left(ab+bc+ac\right)}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra <=> a = b = c
Khôi Bùi : theo e ý 2 có thể đơn giản hóa vấn đề bằng cách đặt ẩn phụ
đặt \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}=t\left(t\ge3\right)\)
\(\Rightarrow P=t+\frac{1}{t}=\frac{t}{9}+\frac{1}{t}+\frac{8}{9}t\)
Áp dụng BĐT AM-GM ta có:
\(P\ge2.\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}t\ge\frac{2.1}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu " = " xảy ra <=> a=b
chứng minh bấ đẳng thức sau :
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
* Chứng minh :
\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (*)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng )
Do đó : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) \(\left(1\right)\)
* Chứng minh :
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) đến đây chứng minh giống chỗ (*)
...
Do đó : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) \(\left(2\right)\)
Từ (1) và (2) suy ra : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( đpcm )
chứng minh bđt sau với a,b,c dương
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có: \(\left(a+b+c\right)\left(ab+bc+ca\right)=a^2\left(b+c\right)+ab\left(b+c\right)+bc\left(b+c\right)+ac\left(b+c\right)+abc\)
\(=\left(b+c\right)\left(a^2+ab+bc+ac\right)+abc\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
Vậy BĐT cần chứng minh trở thành:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{8}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\frac{1}{9}\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le0\) \(?!\)
Bất đẳng thức sai
Thử lại với \(a=b=c=1\) thì \(9\le\frac{64}{9}\) sai thật
BĐT đúng có lẽ là:
\(\left(a+b+c\right)\left(ab+bc+ca\right)\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\le\frac{9}{8}\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (đúng theo AM-GM)
Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)
Sửa đề: \(\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)
\(=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Cho a, b, c là các số thực bất kì. Chứng minh: \(a^2+b^2+c^2-ab-bc-ca\ge3\left(a-b\right)\left(b-c\right)\)
Cho a,b,c là các số thực dương tùy ý. Chứng minh rằng :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\left[1+\sqrt{\frac{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(ab+bc+ca\right)^2}}\right]\)
Đề sai. Nếu chỗ căn vế phải mà là căn bậc 3 thì t sol cho