cho 3 số dương a,b,c chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
Hứa tặng GP nha :))
I. BĐT:
1.Cho a,b,c là độ dài của ba cạnh tam giác CMR:
\(\left(a\right)a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\left(b\right)\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
\(\left(c\right)\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
2. Cho a, b, c, d > 0 và abcd = 1 CMR: \(a^2+b^2+c^2+d^2+ab+cd\ge6\)
3. \(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
4. \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b +c}{2}\)
Chứng minh đẳng thức:
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ba-c^2-ca\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+cb-a^2-ab\right)}=0\)
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Chứng minh rằng: Nếu \(\left(a+b+c\right)^2=3.\left(ab+bc+ca\right)\) thì a=b=c
Chứng minh rằng: với mọi a;b;c
\(\left(a^2+2\right)\left(b^2+2\right)\left(c^2+2\right)\ge3\left(a+b+c\right)^2\)
Chứng minh rằng:
a) \(\left(x+y\right)^5-x^5-y^5=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
b) Cho a + b + c = 0. CMR: \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)
Cho ax+by+cz=0 và a+b+c =1/2018 Chứng minh : \(\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}=2018\)