9\(m^2\)= c\(m^2\)
Ta có:
\(\Delta=9m^2-12m+4=9\left(m^2-\dfrac{12}{9}m+\dfrac{4}{9}\right)=9\left(m^2-2\cdot\dfrac{6}{9}m+\dfrac{36}{81}\right)=9\cdot\left(m-\dfrac{2}{3}\right)^2\ge0\)Để pt có 2 nhgieemj pb thì Denta >0 => \(m\ne\dfrac{2}{3}\)
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Tìm m để hàm số \(\dfrac{\sqrt{4-m^2}}{9-m^2}x+5\) đồng biến
A.-3<m<3 B.-2≤m≤2 C.-2<m<2 D.m>3 hoặc m<-3
Hàm số bị viết thiếu `y=` !
Đk: `-2 <= m <= 2`
Để h/s đồng biến `=>\sqrt{4-m^2}/[9-m^2] > 0` với `-2 < m < 2`
`=>9-m^2 > 0`
`<=>(3-m)(3+m) > 0<=>(m-3)(m+3) < 0<=>-3 < m < 3`
Kết hợp đk
`=>-2 < m < 2`
`->bb C`
bài 9 các cặp phương trình sau có tương đương hay không?
d, x+2=0 và \(\dfrac{x}{x+2}=0\)
bài 8 cho phương trình (m\(^2\)-9)x-3=m. Giải phương trình trong các trường hợp sau:
a,m=2 b,m=3 c,m=-3
Bài 9:
Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)
Bài 8:
a. Khi $m=2$ thì pt trở thành:
$(2^2-9)x-3=2$
$\Leftrightarrow -5x-3=2$
$\Leftrightarrow -5x=5$
$\Leftrightarrow x=-1$
b.
Khi $m=3$ thì pt trở thành:
$(3^2-9)x-3=3$
$\Leftrightarrow 0x-3=3$
$\Leftrightarrow 0=6$ (vô lý)
c. Khi $m=3$ thì pt trở thành:
$[(-3)^2-9]x-3=-3$
$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)
Vậy pt vô số nghiệm thực.
Câu 1: Đa thức 3x^2 + 3x + m + 2 chia cho x + 2 thì m bằng:
A. m = 8 B. m = 9 C. C. m = -8 D. Kết quả khác
Câu 2: Đa thức x^3 - 5x^2 – 7mx + 7 chia cho x – 3 dư 4 thì m bằng:
A. m = -1 B. m = 1 C. m = -3 D. Kết quả khác
Xác định m để các phương trình sau có nghiệm:
a, m2(x-1) = x+m-2 với x > 0
b, (m-1)(x-1)+m-2 = 0 với x \(\ge\) 3
c, \(\frac{\left(2m+1\right)x+5}{\sqrt{9-x^2}}=\frac{\left(2m+3\right)x=m-4}{\sqrt{9-x^2}}\)
a/ \(\Leftrightarrow m^2x-m^2-x-m+2=0\)
\(\Leftrightarrow\left(m^2-1\right)x=m^2+m-2\)
Xét khi \(m^2-1=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0x=1+1-2=0\\0x=1-1-2=-2\left(l\right)\end{matrix}\right.\)
Vậy vs m= 1 pt vô số nghiệm (x>0)
Xét khi \(m^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow x=\frac{m^2+m-2}{m^2-1}\)
Có \(x>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)>0\\\left(m-1\right)\left(m+1\right)>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(m-1\right)\left(m+2\right)< 0\\\left(m-1\right)\left(m+1\right)< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\)
b/ \(\Leftrightarrow mx-m-x+1+m-2=0\)
\(\Leftrightarrow\left(m-1\right)x=1\)
Vs \(m\ne1\)
\(\Rightarrow x=\frac{1}{m-1}\)
Có \(x\ge3\Rightarrow\frac{1}{m-1}\ge3\Leftrightarrow1\ge3m-3\Leftrightarrow m\le\frac{4}{3}\)
Xét \(m=1\Rightarrow0x=1\left(l\right)\)
Vậy vs \(m\le\frac{4}{3}\) thì pt có nghiệm vs x\(\ge3\)
c/ ĐKXĐ: \(9-x^2>0\Leftrightarrow\left(3-x\right)\left(3+x\right)>0\Leftrightarrow-3< x< 3\)
hmm, xem lại hộ cái đề boài nhoa, vế phải trên tử có dấu bằng là sao nhể? =))
a) \(2\left(x^2-2x\right)+\sqrt{x^2-2x-3}-9=0\)
b) \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
c) Cho phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+m}\)
+) Giải phương trình khi m=9
+) Tìm m để phương trình có nghiệm
a, ĐK: \(x\le-1,x\ge3\)
\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)
\(\Leftrightarrow x^2-2x-3=1\)
\(\Leftrightarrow x^2-2x-4=0\)
\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)
b, ĐK: \(-2\le x\le2\)
Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó phương trình tương đương:
\(3t-t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)
Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm
Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)
c, ĐK: \(0\le x\le9\)
Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)
\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)
\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)
\(\Leftrightarrow-t^2+2t+9=m\)
Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)
Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm
\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)
\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)
Cho pt :x2 +(m-1)x+m+2=0
a.Tìm m để pt có 2 nghiệm trái dấu
b.Tìm m để pt có 2 nghiệm thỏa mãn x12+x22=9
Cho m, n không đồng thời bằng 0. Tìm điều kiện của m,n để hàm số y=m sinx -n cosx -3x nghịch biến trên R
A.m3 +n3 >= 0 B.m=2, n=1 C. m2+n2 <=9 C. m3+n3<=9
Lời giải:
Ta có:
Để hàm \(y=m\sin x-n\cos x-3x\) nghịch biến trên R thì:
\(y'=m\cos x+n\sin x-3\leq 0, \forall x\in\mathbb{R}\)
\(\Leftrightarrow m\cos x+n\sin x\leq 3\), \(\forall x\in\mathbb{R}\)
\(\Rightarrow (m\cos x+n\sin x)_{\max}\le 3(*)\)
Ta thấy theo BĐT Bunhiacopxky:
\((m\cos x+n\sin x)^2\leq (m^2+n^2)(\cos ^2x+\sin ^2x)\)
hay \((m\cos x+n\sin x)^2\leq m^2+n^2\)
\(\Rightarrow m\cos x+n\sin x\leq \sqrt{m^2+n^2}\).
Do đó \((m\cos x+n\sin x)_{\max}=\sqrt{m^2+n^2}(**)\)
Từ (*) và (**) suy ra để \(y'\leq 0\) thì \(\sqrt{m^2+n^2}\leq 3\Leftrightarrow m^2+n^2\leq 9\)
Đáp án C.