Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Miamoto Shizuka
Xem chi tiết
Trần Việt Linh
3 tháng 8 2016 lúc 15:03

a) Tứ giác AKBC có:AB,KC là hai đường chéo cắt nhau tại D và

                      DA=DB(gt) 

                       DC=DK(gt)

=>Tứ giác AKBC là hình bình hành

=>AK=BC                           (1)

Tứ giác AICB có BI,AC là hai đường chéo cắt nhau tại E mà:

                          EA=EC(gt)

                          EB=EI(gt)

=>Tứ giác AICB là hình bình hành

=>AI=BC                     (2)

       Từ (1)(2) suy ra: AK=AI

=>A là trung điểm của KI

Tzngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:34

a: Xét ΔEAB và ΔECF có

EA=EC
góc AEB=góc CEF

EB=EF
=>ΔEAB=ΔECF

b: ΔEAB=ΔECF

=>AB=CF<BC

c: góc EBA=góc EFC

góc EFC>góc EBC

=>góc EBA>góc EBC

Nhuân Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 22:12

1:

Xét ΔBAC có

BM,CN là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

BG+CG>BC

=>2/3BM+2/3CN>BC

=>2/3(BM+CN)>BC

=>BM+CN>3/2BC

2:
BF=2BE

=>EF=BE

=>EF=2ED

=>D là trung điểm của EF

Xét ΔFEC có

CD,EK là trung tuyến

CD cắt EK tại G

=>G là trọng tâm

b: G là trọng tâm của ΔFEC

=>GE/GK=1/2 và GC/DC=2

Trương Vân Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:14

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC

Quandung Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2022 lúc 23:29

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

Nhuân Nguyễn
Xem chi tiết
Nhuân Nguyễn
20 tháng 4 2022 lúc 14:11

giúp mik với đang cần gấp lém :((
ét-o-ét 

phóng khoáng
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2020 lúc 22:24

a)

Ta có: EB=EI(gt)

mà E nằm giữa hai điểm B và I

nên E là trung điểm của BI

Xét tứ giác AICB có

E là trung điểm của đường chéo AC(BE là đường trung tuyến ứng với cạnh AC trong ΔABC)

E là trung điểm của đường chéo BI(cmt)

Do đó: AICB là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AI=BC và AI//BC(hai cạnh đối trong hình bình hành AICB)(1)

Ta có: DC=DK(gt)

mà D nằm giữa K và C

nên D là trung điểm của KC

Xét tứ giác AKBC có

D là trung điểm của đường chéo KC(cmt)

D là trung điểm của đường chéo AB(CD là đường trung tuyến ứng với cạnh AB của ΔABC)

Do đó: AKBC là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒AK//BC và AK=BC(hai cạnh đối trong hình bình hành AKBC)(2)

Từ (1) và (2) suy ra AK=AI(3)

Từ (1) và (2) suy ra AK//AI

mà AK và AI có điểm chung là A

nên K,A,I thẳng hàng(4)

Từ (3) và (4) suy ra A là trung điểm của KI(ddpcm)

b) Sửa đề: Chứng minh BI,CK,FA đồng quy tại một điểm

Ta có: AC//KB(hai cạnh đối trong hình bình hành ACBK)

mà F∈KB

nên AC//KF

Xét ΔIKF có

A là trung điểm của KI(cmt)

AC//KF(cmt)

Do đó: C là trung điểm của IF(định lí 1 đường trung bình của tam giác)

Ta có: CB//AK(cmt)

mà I∈AK

nên CB//KI

Xét ΔFIK có

C là trung điểm của FI(cmt)

CB//KI(cmt)

Do đó: B là trung điểm của KF(định lí 1 đường trung bình của tam giác)

Xét ΔFKI có

FA là đường trung tuyến ứng với cạnh KI(A là trung điểm của KI)

IB là đường trung tuyến ứng với cạnh KF(B là trung điểm của KF)

KC là đường trung tuyến ứng với cạnh IF(C là trung điểm của IF)

Do đó: FA,IB,KC cắt nhau tại trọng tâm của ΔFKI

hay FA,IB,KC đồng quy(đpcm)

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:33

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

\(\widehat{BAH}=\widehat{EAH}\)

Do đó: ΔAHB=ΔAHE

b:

Ta có: ΔAHB=ΔAHE

=>AB=AE

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

=>DB=DE

=>ΔDBE cân tại D

c: Xét ΔBDK và ΔEDC có

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

DK=DC

Do đó: ΔBDK=ΔEDC

=>\(\widehat{KBD}=\widehat{CED}\)

Ta có: ΔBAD=ΔEAD

=>\(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\widehat{ABD}+\widehat{KBD}\)

\(=\widehat{AED}+\widehat{CED}\)

\(=180^0\)

=>A,B,K thẳng hàng

d: Ta có: ΔDBK=ΔDEC

=>BK=EC

Xét ΔADC có \(\dfrac{AB}{BK}=\dfrac{AE}{EC}\)

nên BE//KC

Nguyễn Trúc
Xem chi tiết