Chứng minh đa thức :(a-b)^3-(a+b)^3=-2b(3a^2+b^2)
1.(a+b+c)(a^2+b^2+c^2-ab-bc-ca)= a^3-b^3+c^3-3abc
2. (3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
chứng minh các đẳng thức
1) a³ + b³ + c³ - 3abc
=(a + b)(a² - ab + b²) + c³ - 3abc
=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²
=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²
=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)
=(a + b + c)(a² + b² + c² - ab - bc - ca)
2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)
\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)
\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)
\(\Rightarrow\left(1\right)\) đúng (đpcm)
1) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\left(đpcm\right)\)
Chứng minh các đẳng thức :
1) (a + b)^2= a^2 + 2ab + b^2
2) ( a-b)^3=a^3-3a^2b+3ab^2-b^3
1) \(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\left(dpcm\right)\)
2) \(\left(a-b\right)^3\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)
\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)
`a)`
`(a+b)^2`
`=(a+b)(a+b)`
`=a^2+ab+ab+b^2`
`=a^2+2ab+b^2`
`->` ĐPCM
`b)` `(a-b)^3`
`=(a-b)(a-b)(a-b)`
`=(a^2-2ab+b^2)(a-b)`
`=a^3-3a^2b+3ab^2-b^3`
`->` ĐPCM
Chứng minh bất đẳng thức a, 2a-3>2b-3( với a>b. b, -3a+5> -3b+2 ( với a
a) a > b
⇒ 2a > 2b (nhân hai vế với 2 > 0)
⇒ 2a - 3 > 2b - 3 (cộng hai vế với -3)
b) a < b
⇒ -3a > -3b (nhân hai vế với -3 < 0)
⇒ -3a + 2 > -3b + 2 (1) (cộng hai vế với 2)
5 > 2
⇒ -3a + 5 > -3a + 2 (2) (cộng hai vế với -3a)
Từ (1) và (2) ⇒ -3a + 5 > -3b + 2
Chứng minh đẳng thức : (a+b)3 - (a-b)3 = 2b(3a2 + b2)
ta có :
(a+b)3-(a-b)3= a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3
=6a2b+2b3
=2b(3a2+b2)
vậy (a+b)3-(a-b)3=2b(3a2+b2)
chứng minh các hằng đẳng thức sau:
a,(a+b+c)(a2+b2+c2-ab-bc-ca)=a3+b3+c3-3abc
b,(3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
Bài 2: Chứng minh
a, (a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)= a\(^3\)+b\(^{^{ }3}\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)
\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)
b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .
c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)
Chứng minh giả thiết (a+b)^3 =a^3+3a^2b+3ab^2
(a+b).(a-b)=a^2+b^2
(a-b)^3=a^3-3a^2b+3ab^2-b^3
a^3+b^3=(a+b).(a^2-ab+b^2
a^3-b^3=(a-b).(a^2+ab+b^2
Acebb giúp mk với mk sắp phải nộp r
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)
1)Tính P = 3a-b/2a+15 + 3b-a/2b-15 với a-b=15 và a,b khác 7,5
2) Cho đa thức A=5x^4 - 7x^2+ 4xy+y^2; B=-9x^4 - 4xy - 7y^2. Chứng minh 2 đa thức ko đồng thời có giá trị dương tại mỗi giá trị của x,y\(\left\{{}\begin{matrix}A=5x^4-7x^2+4xy+y^2\\B=-9x^4-4xy-7y^2\end{matrix}\right.\)
\(A+B=5x^4-7x^2+4xy+y^2-9x^4-4xy-7y^2\)
\(A+B=\left(5x^4-9x^4\right)+\left(4xy-4xy\right)-\left(7y^2-y^2\right)-7x^2\)
\(A+B=-4x^4-6y^2-7x^2\)
Vì:
\(x^4\ge0\Rightarrow-4x^4\le0\)
\(\left\{{}\begin{matrix}6y^2\ge0\\7x^2\ge0\end{matrix}\right.\)
\(\Rightarrow-4x^4-6y^2-7x^2\le0\)
Vậy A và B không cùng dương
\(P=\dfrac{3a-b}{2a+15}+\dfrac{3b-a}{2b-15}\)
\(P=\dfrac{3a-b}{2a+a-b}+\dfrac{3b-a}{2b-a+b}\)
\(P=\dfrac{3a-b}{3a-b}+\dfrac{3b-a}{3b-a}\)
\(P=1+1=2\)