Tìm x thuộc Z biết
a. -100% < \(\frac{x}{3}\) < -1\(\frac{1}{7}\)( -1\(\frac{1}{6}\))
b. \(\frac{2}{3}\)= \(\frac{17-lxl}{12}\)
Tìm x thuộc Z biết
a) xy + 4y + 3x = 28
b)2xy – 3y+ 3x = 7
tìm x,y thuộc Z biết
a,(3x+2).(y-8)=12
b,(5x-4).(y+3)=-18
\(a,\) Vì \(x,y\in Z\) nên \(\left(3x+2\right):3R2;R1\)
Mà \(\left(3x+2\right)\left(y-8\right)=12\) nên \(3x+2\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do đó \(3x+2\in\left\{-4;-1;2\right\}\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
Với \(x=-2\Rightarrow\left(-4\right)\left(y-8\right)=12\Rightarrow y-8=-3\Rightarrow y=5\)
Với \(x=-1\Rightarrow\left(-3\right)\left(y-8\right)=12\Rightarrow y-8=-4\Rightarrow y=4\)
Với \(x=0\Rightarrow2\left(y-8\right)=12\Rightarrow y-8=6\Rightarrow y=14\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-2;5\right);\left(-1;4\right);\left(0;14\right)\)
\(b,\) Vì \(x,y\in Z\) nên \(\left(5x-4\right):5R1;R4\)
Mà \(\left(5x-4\right)\left(y+3\right)=-18\)
\(\Rightarrow5x-4\inƯ\left(-18\right)=\left\{-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right\}\\ \Rightarrow5x-4\in\left\{-9;1;6\right\}\\ \Rightarrow x\in\left\{-1;1;2\right\}\)
Với \(x=-1\Rightarrow-9\left(y+3\right)=-18\Rightarrow y+3=2\Rightarrow y=-1\)
Với \(x=1\Rightarrow y+3=18\Rightarrow y=15\)
Với \(x=2\Rightarrow6\left(y+3\right)=18\Rightarrow y+3=3\Rightarrow y=0\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;-1\right);\left(1;15\right);\left(2;0\right)\)
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
3) tìm x thuộc z, biết
a) x-43=(35-x)-48
b) 305-x+14=48+(x-23)
c) -(-x -6+85)=(x+51)-54
d)-(35-x)-(37-x)= 33-x
a: \(x-43=\left(35-x\right)-48\)
=>\(x-43=35-x-48\)
=>\(x-43=-x-13\)
=>\(x+x=-13+43\)
=>2x=30
=>x=30/2=15
b: \(305-x+14=48+\left(x-23\right)\)
=>\(319-x=48+x-23=25+x\)
=>\(x+25=319-x\)
=>\(x+x=319-25\)
=>\(2x=294\)
=>\(x=\dfrac{294}{2}=147\)
c: \(-\left(-x-6+85\right)=\left(x+51\right)-54\)
=>\(-\left(-x+79\right)=x+51-54\)
=>x-79=x-3
=>-79=-3(vô lý)
=>\(x\in\varnothing\)
d: \(-\left(35-x\right)-\left(37-x\right)=33-x\)
=>\(-35+x-37+x=33-x\)
=>2x-72=-x+33
=>\(2x+x=33+72\)
=>3x=105
=>\(x=\dfrac{105}{3}=35\)
Tìm x thuộc Z, biết
a) 1 - 2x = 5
b) 11 - 5x = 21
c) 13 chia hết cho x
d) x chia hết cho 5 và - 5 lớn hơn hoặc bằng x < 15
Giúp em với ạ !
a) 1 - 2x = 5
2x = -4
x = -2
b) 11 - 5x = 21
5x = -10
x = -2
c) x \(\in\){-13; -1; 1; 13}
tìm |x| thuộc Q biết
a, x = -4/7
a) \(\left|x\right|=x\\ \left|-\dfrac{4}{7}\right|=\dfrac{4}{7}\)
Tìm số x Z biết
a) (x - 6)2 = 9 b) |x| = 3
a) (x - 6)2 = 9
\(\Rightarrow\left[{}\begin{matrix}x-6=3\\x-6=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)
b) \(\left|x\right|=3\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
tìm x, y, z biết
a) x/5 = y/2 = z/-3 và xyz = 240
b) x/3 = y/4 = z/2 và x^3 - y^3 + z^3 = -29
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{z}{-3}=\dfrac{x.y.z}{5.2.-3}=\dfrac{240}{-30}=-8\)
\(\Rightarrow\dfrac{x}{5}=-8\Rightarrow x=-8.5=-40\)
\(\Rightarrow\dfrac{y}{2}=-8\Rightarrow y=-8.2=-16\)
\(\Rightarrow\dfrac{z}{-3}=-8\Rightarrow z=-8.-3=24\)
Vậy \(x=--40;y=-16\) và \(z=24\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{2}=\dfrac{x^3-y^3+z^3}{3^3-4^3+2^3}=\dfrac{-29}{-29}=1\)
\(\Rightarrow\dfrac{x}{3}=1\Rightarrow x=3.1=3\)
\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=1.4=4\)
\(\Rightarrow\dfrac{z}{2}=1\Rightarrow z=1.2=2\)
Vậy \(x=3;y=4\) và \(z=2\)
Tìm x biết
a)3.5x+1- 100 = - 25
b)4x-26+2x=28
\(a,3.5^{x+1}-100=-25\\ 3.5^{x+1}=-25+100\\ 3.5^{x+1}=75\\ 5^{x+1}=75:3\\ 5^{x+1}=25\\ 2^{x+1}=5^2\\ x+1=2\\ x=2-1\\ x=1\)
\(b,4x-26+2x=28\\ 4x+2x-26\\ 6x-26=28\\ 6x=28+26\\ 6x=54\\ x=54:6\\ x=9\)
tìm x,y,z biết
a/ 3x=2y; 4x=2z mà x+2y-3z=-20
b/x.y=10
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\)
Do đó: x=10; y=15; z=20
b: \(\left(x,y\right)\in\left\{\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right);\left(-1;-10\right);\left(-10;-1\right);\left(-2;-5\right);\left(-5;-2\right)\right\}\)