9x^4 -10x^2+1=0
\(9x^4-4x^2=0\)
\(2x^4-x^2-6=0\)
\(x^4-9x^2+100=0\)
\(x^4-3x^2-54=0\)
\(3x^4-10x^2+3=0\)
\(x^4-7x^2-18=0\)
a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
1, x^4 +5x^3 +10x^2+ +15x+9=0
2. X^4 - 4x^3 - 9x^2 + 8x +4=0
2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)
1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)
\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3>0\forall x\)
nên (x+1)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: S={-1;-3}
Giải phương trình
\(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)^2+9x^4=0\)
Đặt \(\left(x^2-x+1\right)^2=a;x^2=b\left(a,b\ge0\right)\)
\(PT\Leftrightarrow a^2-10ab+9b^2=0\\ \Leftrightarrow a^2-9ab-ab+9b^2=0\\ \Leftrightarrow\left(a-b\right)\left(a-9b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\a=9b\end{matrix}\right.\\ \forall a=b\Leftrightarrow\left(x^2-x+1\right)^2-x^2=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+1\right)=0\\ \Leftrightarrow x=1\\ \forall a=9b\Leftrightarrow\left(x^2-x+1\right)^2-9x^2=0\\ \Leftrightarrow\left(x^2-4x+1\right)\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
a: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Tìm x:
a) 27x3-27x2+9x-1=\(\dfrac{-1}{8}\)
b) x(4-x)+(2x-1)(x-4)=0
c) 3x(5x-2)-10x+4=0
a.
\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow3x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
b.
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)
c.
\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
CMR phương trình 9x4-10x2+1=0 có nghiệm
đặt x2=t khi đó phương trình trở thành 9t2-10t+1=0
dùng Vi-Ét và ứng dụng tìm được nghiệm là 1 vầ 1/9
thay lại tìm x
đáp số: x=-1;x=-1/3;x=1/3;x=1
Bài 4: Tìm x:
1) x2 - 9x = 0 2) x(x - 4) – x2 = 7 3) 3x + 2(x – 5) = 5
4) 25x2 - 1 = 0 5) 3x(x - 2) - 5(x - 2) = 0 6) 3x(x - 7) + 4(x – 7) = 0
7) 4x2 – 9 = 0 8) 10x(x - 4) + 2x - 8 = 0 9) x(2x - 5) - 2x2 = 0
10) 2x2 – 4x = 0 11) 2x(3 - 4x) + 3(4x - 3) = 0 12) 2x (x – 5) – 2x2 = 3
mọi người giúp mình vs chiều 1g mình thi rồi! cảm ơn!
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
1) \(x^2-9x=0\Rightarrow x\left(x-9\right)=0\Rightarrow x=0;9\)
2) \(x\left(x-4\right)-x^2=7\Rightarrow-4x=7\Rightarrow x=-\dfrac{7}{4}\)
3) \(3x+2\left(x-5\right)=5\Rightarrow5x-10=5\Rightarrow5x=15\Rightarrow x=3\)
4) \(25x^2-1=0\Rightarrow x^2=\dfrac{1}{25}\Rightarrow x=\pm\dfrac{1}{5}\)
5) \(3x\left(x-2\right)-5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(3x-5\right)=0\Rightarrow x=2;\dfrac{5}{3}\)
6) \(3x\left(x-7\right)+4\left(x-7\right)\Rightarrow\left(3x+4\right)\left(x-7\right)=0\Rightarrow x=-\dfrac{4}{3};7\)
7) \(4x^2-9=0\Rightarrow x^2=\dfrac{9}{4}\Rightarrow x=\pm\dfrac{3}{2}\)
8) \(10x\left(x-4\right)+2x-8=0\Rightarrow2\left(x-4\right)\left(5x+1\right)=0\Rightarrow x=4;-\dfrac{1}{5}\)
9) \(x\left(2x-5\right)-2x^2=0\Rightarrow x\left(2x-5-2x=0\right)\Rightarrow x=0\)
10) \(2x^2-4x=0\Rightarrow2x\left(x-2\right)=0\Rightarrow x=0;2\)
11) \(2x\left(3-4x\right)+3\left(4x-3\right)=0\Rightarrow2x\left(4x-3\right)-3\left(4x-3\right)=0\Rightarrow\left(4x-3\right)\left(2x-3\right)=0\Rightarrow x=\dfrac{3}{4};\dfrac{3}{2}\)
12) \(2x\left(x-5\right)-2x^2=3\Rightarrow-10x=3\Rightarrow x=-\dfrac{3}{10}\)
Giải pt
(x2 -x +1)4 - 10x2(x2 - x + 1)2 + 9x4 = 0\(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)^2+9x^4=0\)
dặt \(\left(x^2-x+1\right)^{ }=y\)ta đc:
\(y^4-10x^2y^2+9x^4=0< =>y^4-9x^2y^2-x^2y^2+9x^4=0< =>y^2\left(y^2-9x^2\right)-x^2\left(y^2-9x^2\right)=0< =>\left(y^2-x^2\right)\left(y^2-9x^2\right)=0< =>\left(y-x\right)\left(y+x\right)\left(y-3x\right)\left(y+3x\right)=0\)
<=<\(\left[{}\begin{matrix}y-x=0< =>y=x\\y+x=0< =>y=-x\\y-3x=0< =>y=3x\\y+3x=0< =>y=-3x\end{matrix}\right.\)
(tớ k chắc :))
tớ làm tiếp,quên mất phẩn thay==
thay y=x^2-x+1 ta đc:
\(\left[{}\begin{matrix}x^2-x+1=x\\x^2-x+1=-x\\x^2-x+1=-3x\\x^2-x+1=3x\end{matrix}\right.< =>\left[{}\begin{matrix}x^2-2x+1=0\\x^2+1=0\\x^2+2x+1=0\\x^2-4x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x-1\right)^2=0\\x^2+1=0\\\left(x+1\right)^2=0\\x^2+4x+4-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x-1=0\\x^2=-1\left(voly\right)\\x+1=0\\\left(x+2\right)^2=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=1\\xktm\\x=-1\\x+2=\sqrt{ }\end{matrix}\right.3}\)
Gi ải phương trình
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) b) \(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)
c) \(\sqrt{x^2-10x+25}=2\) d) \(\sqrt{x^2-14x+49}-5=0\)
a: ĐKXĐ: x>=5
\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)
=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
=>\(2\sqrt{x-5}=4\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
b: ĐKXĐ: x>=1/2
\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)
=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)
=>\(5-\sqrt{2x-1}=0\)
=>\(\sqrt{2x-1}=5\)
=>2x-1=25
=>2x=26
=>x=13(nhận)
c: \(\sqrt{x^2-10x+25}=2\)
=>\(\sqrt{\left(x-5\right)^2}=2\)
=>\(\left|x-5\right|=2\)
=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
d: \(\sqrt{x^2-14x+49}-5=0\)
=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)
=>\(\sqrt{\left(x-7\right)^2}=5\)
=>|x-7|=5
=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)
\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)
\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
\(a)ĐKXĐ:x\ge5\\ \sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=\dfrac{4}{2}\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow\left(\sqrt{x-5}\right)^2=2^2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=4+5\\ \Leftrightarrow x=9\left(tmđk\right)\)
Vậy \(S=\left\{9\right\}\)
\(b)ĐKXĐ:x\ge2\\ \sqrt{2x-1}-\sqrt{8x-4}+5=0\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{8x-4}=0-5\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow-\left(\sqrt{2x-1}\right)=\left(-5\right)^2\\ \Leftrightarrow-2x+1=-25\\ \Leftrightarrow-2x=\left(-25\right)-1\\ \Leftrightarrow-2x=-26\\ \Leftrightarrow x=\dfrac{-26}{-2}\\ \Leftrightarrow x=13\left(tmđk\right)\)
Vậy \(S=\left\{13\right\}\)
\(c)\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+5\\x=\left(-2\right)+5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{7;3\right\}\)
\(d)\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{x^2-14x+49}=0+5\\ \Leftrightarrow\sqrt{x^2-14x+49}=5\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5+7\\x=\left(-5\right)+7\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{12;2\right\}.\)
Tìm x
a) (2x - 3)(x^2 + 2) - 2(x + 1)^3 - 9x^2 = -5
b) 3(x - 2) - x^2 + 4 = 0
c) x^3 - 5x^2 - 10x= -50
d) x^3 + 9x= 6x^2
e) 2x^2 - 5x + 3 = 0
f) x^2 - x - 2= 0