tìm tất cả các số thực (x;y) thõa mãn \(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
giúp mình với nha
a) Tìm tất cả các số thực x sao cho x2 = 4.
b) Tìm tất cả các số thực x sao cho x3 = - 8.
a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x = \pm 2\)
b) \({x^3} = - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x = - 2.\)
- Chú ý:
Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.
Tìm tất cả các số thực x thỏa mãn điều kiện \(\left| x \right| = 2,5\)
Các số thực x thỏa mãn điều kiện \(\left| x \right| = 2,5\) là các số thực có khoảng cách từ số đó đến gốc tọa độ O là 2,5.
Đó là 2 số -2,5 và 2,5 nằm về 2 phía so với gốc O và cách gốc O một khoảng 2,5 đơn vị.
Chú ý: Có 2 số thực là 2 số đối nhau thỏa mãn giá trị tuyệt đối của nó bằng một số dương cho trước.
\(|x|=a \Rightarrow x=a\) hoặc \(x=-a\)
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
tìm tất cả các số thực x sao cho k= x/(x²-5x+7) là một số nguyên
1. Tìm tất cả các giá trị thực của tham số m để hàm số y= mx - sin3x đồng biến trên khoảng ( trừ vô cùng ; cộng vô cùng) 2. Tìm tất cả các giá trị thực của tham số m để hàm số y = x + mcosx đồng biến trên khoảng( trừ vô cùng ; cộng vô cùng)
1.
\(y'=m-3cos3x\)
Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)
\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)
\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)
\(\Leftrightarrow m\ge3\)
2.
\(y'=1-m.sinx\)
Hàm đồng biến trên R khi và chỉ khi:
\(1-m.sinx\ge0\) ; \(\forall x\)
\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)
- Với \(m=0\) thỏa mãn
- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)
\(\Rightarrow m\ge-1\)
- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)
\(\Rightarrow m\le1\)
Kết hợp lại ta được: \(-1\le m\le1\)
Tìm tất cả các số thực x biết x^4+2x^3−6x^2+2x+1=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2-3x^2+3x-x+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-x^2+4x^2-4x+x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x^2+4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
Tìm tất cả các số thực x, y sao cho x 2 - 1 + yi = -1 + 2i
A . x = - 2 , y = 2
B . x = 2 , y = 2
C . x = 0 , y = 2
D . x = 2 , y = - 2
Tìm tất cả các số thực x, y sao cho 1 - x 2 - y . i = i 3 - i 2 - i .
A. x = 2 , y = 2
B. x = 0, y = 2
C. x = - 2 , y = 2
D. x = 2, y = 0
Tìm tất cả các số thực x, y sao cho 1 − x 2 − y i = i 3 − i 2 − i .
A. x = 2 , y = 2
B. x = 0 , y = 2
C. x = − 2 , y = 2
D. x = 2 , y = 0
a, Tìm tất cả các số nguyên x thỏa mãn -11<x<9. Tính tổng tất cả các số nguyên vừa tìm đc
b,Tìm tất cả các số nguyên x thỏa mãn -9<x<10.Tính tổng các số nguyên vừa tìm đc
c,Tìm tất cả các số nguyên x thỏa mãn -15<x<16.Tính tổng tất cả các số nguyên vừa tìm đc
Phần b và c là dấu lớn hơn hoặc bằng nhé !!
MN GIÚP MÌNH VỚI Ạ !!!!
a)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-10;-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5;6;7;8\right\}\)
Tổng các số nguyên trên là:
\((8-10).19:2=-19\)
b)
Các số nguyên x thỏa mãn là:
\(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;...;6;7;8;9;10\right\}\)
Tổng các số trên là:
\((10-9).20:2=10\)
c) Các số nguyên x thỏa mãn là:
\(x\in\left\{-15;-14;-13;-12;-11;-10;-9;-8;-7;-6;-5;...;12;13;14;15;16\right\}\)
Tổng các số nguyên đó là:
\((16-15).32:2=16\)