\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}+2\\x=-\sqrt{3}+2\end{matrix}\right.\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2-3x^2+3x-x+1=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+3x^2-3x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3-x^2+4x^2-4x+x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x^2+4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)