viết các số sau thành 1 biểu thức:
-số gồm n chữ số 9
-số gồm n chữ số 1
-số gồm n chữ số 2
Viết các số sau thành 1 biểu thức:
+ Số gồm n chữ số 9
+ Số gồm n chữ số 1
+ Số gồm n chữ số 2
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
giúp mình với làm thế nào ?
Bài 10:
Gọi \(n=2a-1\left(a\in N,a>1\right)\)
Có: \(A=1+3+5+7+...+\left(2a-1\right)\)
\(=\dfrac{1+\left(2a-1\right)}{2}.a=a^2\)
Vậy A là số chính phương
6
Tổng các hệ số của đa thức khi khai triển là;
\(\left(3-4+1\right)^{2004}\cdot\left(3+4+1\right)^{2005}=0\)
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 6:
Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1
=>Tổng các hệ số khi khai triển là:
\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)
Help em họ của mình
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc
\(4S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-....+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}\\ \Rightarrow4S+S=1-\dfrac{1}{2^2}+\dfrac{1}{2^4}-...+\dfrac{1}{2^{4n-4}}-\dfrac{1}{2^{4n-2}}+...+\dfrac{1}{2^{2000}}-\dfrac{1}{2^{2002}}+\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004}}\\ \Rightarrow5S=1-\dfrac{1}{2^{2004}}\\ \Rightarrow S=\dfrac{1}{5}-\dfrac{1}{2^{2004}\cdot5}< \dfrac{1}{5}=0,2\)
1.tìm số tự nhiên n để các biểu thức sau là số tự nhiên
\(B=\frac{2n+9}{n+2}+\frac{5n+17}{n+2}-\frac{3n}{n+2}\)
2.có bao nhiêu số gồm 3 chữ số trong đó có c/s 4?
B = \(\frac{2n+9}{n+2}\)+ \(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)
B= \(\frac{2n+9+5n+17-3n}{n+2}\)
B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)
B= \(\frac{4n+9+17}{n+2}\)= \(\frac{4n+26}{n+2}\)
Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> (4n+26) - 4(n+2)\(⋮\)n+2
=> 4n+26 - 4n - 8 \(⋮\)n+2
=> 18 \(⋮\)n+2
=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}
=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}
Vậy...
C/m các số sau là số chính phương
M=111...1555...56 (có n chữ số 1, có n-1 chữ số 5)
N=444...4888...89 (có n chữ số 4, có n-1 chữ số 8)
B=C+D+! trong đó Claf số chỉ gồm 2n chữ số 1,số D chỉ gồm n chữ số 4 (n thuộc N*)
HÃy giải theo phương thức cấu tạo số phân tích rồi suy luận ra
cho a là các số gồm 2n chữ số 1
b là các số gồm n+1 chữ số 1
c là các số gồm n chữ số 6
cm
a+b+c+8 là chính phương
bài 1: a. 1 số nguyên tố gồm 15 chữ số 2.Có cách nào viết thêm các chữ số 0 vào vị trí tuỳ ý để tạo thành 1 số chính phương.
b. 1 số tự nhiên gồm 1 chữ số 1; 2 chữ số 2; 3 chữ số 3; 4 chữ số 4 có thể là 1 số chính phương hay không?
bài 2: tìm 1 số có 4 chữ số mà chữ số hàng nghìn = chữ số hàng đơn vị và số đó= bình phương của số 5n + 1 (n là số tự nhiên)