Bài 6:
Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1
=>Tổng các hệ số khi khai triển là:
\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)
Bài 6:
Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1
=>Tổng các hệ số khi khai triển là:
\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)
Bài toán 1 Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 2. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 3. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 4. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 5. Chứng minh rằng: A = 1 + 3 + 5 + ... + n là số chính phương (n lẻ).
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
a, Tìm x biết : \(|x^2+|6x-2||\)
b, Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức : \(A(x)=(3-4x+x^2)^{2004}.(3+4x+x^2)^{2005}\)
Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức :
\(A\left(x\right)=\left(3-4x+x^2\right)^{2004}.\left(3+4x+x^2\right)^{2005}\)
tìm tổng các hệ số của đa thức nhận đc sau khi bỏ dấu ngoặc trong biểu thức:
A(x)=(3-4x+x2)2004 . (3+4x+x2)2005
a, Cho x = 2005 . Tính :\(A=x^{2005}-2006x^{2004}+2006x^{2003}-...........+2006x^3-2006x^2+2006x-1\)b, Tìm tổng các hệ số của đa thức hận được sau khi bỏ dấu ngoặc trong biểu thức :
\(A_{\left(x\right)}=\left(3-4x+x^2\right)^{2017}\cdot\left(3+4x+x^2\right)^{2018}\)
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
1, Tìm tổng các hệ số của đa thức nhận đc sau khi bỏ dấu ngoặc trog bt
\(A\left(x\right)=\left(3-4x+x^2\right)^{2018}.\left(3+4x+x^2\right)^{2019}\)