Tính giá trị biểu thức:
\(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)
\(B=2\sqrt{9}+3\sqrt{36}-\sqrt{64}\)
Tính giá trị của biểu thức
a. A=\(\sqrt{64}\)+\(4\sqrt{4}\)+ 2016
b B=\(2\sqrt{8}\)-\(3\sqrt{18}\)+\(4\sqrt{128}\)-\(5\sqrt{32}\)
a) \(A=\sqrt{64}+4\sqrt{4}+2016=\sqrt{8^2}+4.\sqrt{2^2}+2016=8+4.2+2016=2032\)
b) \(B=2\sqrt{8}-3\sqrt{18}+4\sqrt{128}-5\sqrt{32}=4\sqrt{2}-9\sqrt{2}+32\sqrt{2}-20\sqrt{2}\)
\(=\sqrt{2}\left(4-9+32-20\right)=7\sqrt{2}\)
a,
\(A=\sqrt{8}^2+2.\sqrt{8}.\sqrt{2}+\sqrt{2}^2+2014\)
\(=\left(\sqrt{8}+\sqrt{2}\right)^2+2014\)
Tính giá trị của biểu thức:
\(\begin{array}{l}a)\sqrt {0,49} + \sqrt {0,64} ;b)\sqrt {0,36} - \sqrt {0,81} ;\\c)8.\sqrt 9 - \sqrt {64} ;d)0,1.\sqrt {400} + 0,2.\sqrt {1600} \end{array}\)
\(\begin{array}{l}a)\sqrt {0,49} + \sqrt {0,64} = 0,7 + 0,8 = 1,5;\\b)\sqrt {0,36} - \sqrt {0,81} = 0,6 - 0,9 = - 0,3;\\c)8.\sqrt 9 - \sqrt {64} = 8.3 - 8 = 24 - 8 = 16;\\d)0,1.\sqrt {400} + 0,2.\sqrt {1600} = 0,1.20 + 0,2.40 = 2 + 8 = 10\end{array}\)
B 5.Tính giá trị của các biểu thức:
a) (\(\sqrt{12}\)-2\(\sqrt{108}\)+3\(\sqrt{75}\)).\(\sqrt{3}\) b)(3\(\sqrt{8}\)- 4\(\sqrt{32}\)+5\(\sqrt{18}\)):5
c)(\(\sqrt{20}\)-2\(\sqrt{45}\)+3\(\sqrt{125}\) ):\(\sqrt{5}\) d)(3\(\sqrt{7}\)-4\(\sqrt{28}\)+5\(\sqrt{343}\)).\(\dfrac{1}{10}\)
a: \(=\left(2\sqrt{3}-12\sqrt{3}+15\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)
b: \(=\left(6\sqrt{2}-16\sqrt{2}+15\sqrt{2}\right):5=\sqrt{2}\)
c: \(=\dfrac{\left(2\sqrt{5}-6\sqrt{5}+15\sqrt{5}\right)}{\sqrt{5}}=17-6=11\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\); \(a=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
Ta có: \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)
\(=\dfrac{2}{3}\)
Ta có: \(a=\sqrt{4+2\sqrt{2}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{2\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
=2
Thay a=2 và \(b=\dfrac{2}{3}\) vào M, ta được:
\(M=\dfrac{1+2\cdot\dfrac{2}{3}}{2+\dfrac{2}{3}}-\dfrac{1-2\cdot\dfrac{2}{3}}{2-\dfrac{2}{3}}\)
\(=\dfrac{7}{8}+\dfrac{1}{4}\)
\(=\dfrac{7}{8}+\dfrac{2}{8}=\dfrac{9}{8}\)
Tính giá trị của biểu thức: \(M=\dfrac{1+ab}{a+b}-\dfrac{1-ab}{a-b}\) với \(b=\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
Cho số thực x thỏa mãn \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
Tính giá trị biểu thức \(A=\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
1: Ta có: \(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
2)
a) Thay \(x=\dfrac{9}{4}\) vào P, ta được:
\(P=\left(\dfrac{3}{2}+2\right):\left(\dfrac{3}{2}+3\right)=\dfrac{7}{2}:\dfrac{11}{2}=\dfrac{7}{11}\)
b) Ta có: \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
=1
Thay x=1 vào P, ta được:
\(P=\dfrac{1+2}{1+3}=\dfrac{3}{4}\)
A=\(\sqrt{12-\sqrt{80-32\sqrt{3}}}-\sqrt{12+\sqrt{80-32\sqrt{3}}}\) tính giá trị biểu thức
\(A^2=12-\sqrt{80-32\sqrt{3}}+12+\sqrt{80-32\sqrt{3}}-2\sqrt{144-80+32\sqrt{3}}\)
=>\(A^2=24-2\sqrt{48+32\sqrt{3}}\)
=>A^2=24-8căn 3+2căn 3
=>\(A=\sqrt{24-8\sqrt{3+2\sqrt{3}}}\)
Tính giá trị của biểu thức
\(\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}-2\right)\)
\(=\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{12+4\sqrt{6}+2+8\sqrt{3}+4\sqrt{2}+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}\right)^2+4\left(2\sqrt{3}+\sqrt{2}\right)+4-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{\left(2\sqrt{3}+\sqrt{2}+2\right)^2-2}\right)\\ =\left(4\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)=20\)