1 : \(\dfrac{12}{35}\) = .................
Câu 2. phân số bằng \(\dfrac{2}{7}\) là:
A. \(\dfrac{1}{2}\) B.\(\dfrac{12}{35}\) C.\(\dfrac{6}{21}\) D.\(\dfrac{15}{35}\)
2/ Tìm y:
y + \(\dfrac{1}{3}\) x 4 = 12 \(\dfrac{2}{5}\) + y = \(\dfrac{12}{35}\) x \(\dfrac{14}{9}\)
\(y=12-\left(\dfrac{1}{3}\times4\right)=12-\dfrac{4}{3}=\dfrac{32}{3}\)
\(y=\left(\dfrac{12}{35}\times\dfrac{14}{9}\right)-\dfrac{2}{5}=\dfrac{8}{15}-\dfrac{2}{5}=\dfrac{2}{15}\)
a) \(y+\dfrac{1}{3}\times4=12\)
\(y+\dfrac{1}{3}=12:4\)
\(y+\dfrac{1}{3}=3\)
\(y=3-\dfrac{1}{3}\)
\(y=\dfrac{8}{3}\)
b) \(\dfrac{2}{5}+y=\dfrac{12}{35}\times\dfrac{14}{9}\)
\(\dfrac{2}{5}+y=\dfrac{8}{15}\)
\(y=\dfrac{8}{15}-\dfrac{2}{5}\)
\(y=\dfrac{2}{15}\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(=\dfrac{-6}{5}.\dfrac{4\left(3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}\right)}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{35}}:\dfrac{4\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}\)
\(=\dfrac{-6}{5}.4:\dfrac{4}{5}\)
\(=\dfrac{-6.4.5}{5.4}=-6\)
\(-1\dfrac{1}{5}.\dfrac{12+\dfrac{4}{3}-\dfrac{12}{37}-\dfrac{12}{35}}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4+\dfrac{4}{17}+\dfrac{4}{19}+\dfrac{4}{2003}}{5+\dfrac{5}{17}+\dfrac{5}{19}+\dfrac{5}{2003}}\)
\(=\dfrac{-6}{5}.\dfrac{4\left(3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}\right)}{3+\dfrac{1}{3}-\dfrac{3}{37}-\dfrac{3}{53}}:\dfrac{4\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}{5\left(1+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{2003}\right)}\)
\(=\dfrac{-6}{5}.\dfrac{4}{3}:\dfrac{4}{5}\)
\(=\dfrac{-6.4.5}{5.3.4}=\dfrac{-6}{3}=-2\)
Vậy...
Tính nhanh:
a, \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
b, \(\left(-\dfrac{1}{4}+\dfrac{7}{35}-\dfrac{5}{3}\right)-\left(-\dfrac{15}{12}+\dfrac{6}{11}-\dfrac{48}{49}\right)\)
a: Ta có: \(\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
=0
\(\dfrac{-52}{17}+\left(\dfrac{12}{19}+\dfrac{52}{17}\right)\)
\(\dfrac{21}{35}+\left(-1+\dfrac{14}{35}\right)\)
1. \(-\dfrac{52}{17}+\left(\dfrac{12}{19}+\dfrac{52}{17}\right)=\left[\left(-\dfrac{52}{17}\right)+\left(-\dfrac{52}{17}\right)\right]+\dfrac{12}{19}=\dfrac{12}{19}\)
2. \(\dfrac{21}{35}+\left(-1+\dfrac{14}{35}\right)=\dfrac{3}{5}+\left(-1+\dfrac{2}{5}\right)=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)+\left(-1\right)=1-1=0\)
1. \(\frac{-52}{17}+\left(\frac{12}{19}+\frac{52}{17}\right)=\frac{-52}{17}+\frac{12}{19}+\frac{52}{17}\)\(=\left(\frac{-52}{17}+\frac{52}{17}\right)+\frac{12}{19}=\frac{0}{17}+\frac{12}{19}=\frac{12}{19}\)
2. \(\frac{21}{35}+\left(-1+\frac{14}{35}\right)=\frac{21}{35}-1+\frac{14}{35}=\left(\frac{21}{35}+\frac{14}{35}\right)-1=1-1=0\)
tìm x biết
a)x-\(\dfrac{3}{7}\)=\(\dfrac{2}{5}.\dfrac{1}{4}\)
b)x+\(\dfrac{4}{5}\)=\(\dfrac{-5}{12}\).\(\dfrac{3}{25}\)
c)\(\dfrac{x}{182}\)=\(\dfrac{-6}{12}\).\(\dfrac{35}{91}\)
a/ \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{37}{70}\)
Vậy....
b/ \(x+\dfrac{4}{5}=-\dfrac{5}{12}\cdot\dfrac{3}{25}\)
\(x+\dfrac{4}{5}=-\dfrac{1}{20}\)
\(x=-\dfrac{1}{20}-\dfrac{4}{5}=-\dfrac{17}{20}\)
Vậy....
c/ \(\dfrac{x}{182}=-\dfrac{6}{12}\cdot\dfrac{35}{91}\)
\(\dfrac{x}{182}=-\dfrac{5}{26}\)
\(=>x\cdot26=-5\cdot182\)
\(26x=-910\)
\(x=-910:26=-35\)
Vậy....
a) Ta có: \(x-\dfrac{3}{7}=\dfrac{2}{5}\cdot\dfrac{1}{4}\)
\(\Leftrightarrow x-\dfrac{3}{7}=\dfrac{1}{10}\)
\(\Leftrightarrow x=\dfrac{1}{10}+\dfrac{3}{7}=\dfrac{7}{70}+\dfrac{30}{70}\)
hay \(x=\dfrac{37}{70}\)
Vậy: \(x=\dfrac{37}{70}\)
Tính tổng sau đây:
a,\(\dfrac{-3}{12}\)+\(\dfrac{1}{-4}\) b,\(\dfrac{5}{12}+\dfrac{-3}{28}\) c,\(\dfrac{-7}{15}+\dfrac{3}{35}\) d,\(\dfrac{-5}{7}+\dfrac{-3}{4}\)
Giúp mk với.
a. \(\dfrac{-3}{12}+\dfrac{1}{-4}=\dfrac{-3}{12}+\dfrac{-3}{12}=\dfrac{-3-3}{12}=\dfrac{-6}{12}=\dfrac{-1}{2}\)
b. \(\dfrac{5}{12}+\dfrac{-3}{28}=\dfrac{35}{84}+\dfrac{-9}{84}=\dfrac{35+\left(-9\right)}{84}=\dfrac{26}{84}=\dfrac{13}{42}\)
c. \(\dfrac{-7}{15}+\dfrac{3}{35}=\dfrac{-49}{105}+\dfrac{9}{105}=\dfrac{-49+9}{105}=\dfrac{-40}{105}=\dfrac{-8}{21}\)
d. \(\dfrac{-5}{7}+\dfrac{-3}{4}=\dfrac{-20}{28}+\dfrac{-21}{28}=\dfrac{-20+\left(-21\right)}{28}=\dfrac{-41}{28}\)
giải pt \(x+\dfrac{x}{\sqrt{x^2-1}}=\dfrac{35}{12}\)
Viết mỗi phân số sau dưới dạng tổng các phân số có tử số là 1 và mẫu số khác nhau:
\(\dfrac{13}{35}\) \(\dfrac{11}{16}\) \(\dfrac{5}{12}\) \(\dfrac{6}{35}\)
\(\dfrac{11}{16}\) = \(\dfrac{1}{16}\) + \(\dfrac{10}{16}\) = \(\dfrac{1}{16}\) + \(\dfrac{2+8}{2\times8}\) = \(\dfrac{1}{16}\) + \(\dfrac{2}{2\times8}\) + \(\dfrac{8}{2\times8}\) = \(\dfrac{1}{16}\) + \(\dfrac{1}{8}\)+ \(\dfrac{1}{2}\)
\(\dfrac{5}{12}\) = \(\dfrac{1}{12}\) + \(\dfrac{4}{12}\) = \(\dfrac{1}{12}\) + \(\dfrac{4}{3\times4}\) = \(\dfrac{1}{12}\) + \(\dfrac{1}{3}\)
\(\dfrac{6}{35}\) = \(\dfrac{1}{35}\) + \(\dfrac{5}{35}\) = \(\dfrac{1}{35}\) + \(\dfrac{5}{5\times7}\) = \(\dfrac{1}{35}\) + \(\dfrac{1}{7}\)