Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Jenner
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 9 2021 lúc 21:37

Chắc là a;b;c hết chứ?

\(VT=\dfrac{a}{a+b+c+b-a}+\dfrac{b}{a+b+c+c-b}+\dfrac{c}{a+b+c+a-c}\)

\(VT=\dfrac{a}{c+2b}+\dfrac{b}{a+2c}+\dfrac{c}{b+2a}=\dfrac{a^2}{ac+2ab}+\dfrac{b^2}{ab+2bc}+\dfrac{c^2}{bc+2ac}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\) (đpcm)

missing you =
11 tháng 9 2021 lúc 21:38

cho x,y,z>0 ,x+y+z=1 chu nhi?

\(\Rightarrow\dfrac{x}{x+y+z+y-x}=\dfrac{x}{2y+z}\)

\(\Rightarrow\dfrac{y}{1+z-y}=\dfrac{y}{x+y+z+z-y}=\dfrac{y}{2z+x}\)

\(\Rightarrow\dfrac{z}{1+x-z}=\dfrac{z}{x+y+z+x-z}=\dfrac{z}{2x+y}\)

\(\Rightarrow A=\dfrac{x}{2y+z}+\dfrac{y}{2z+x}+\dfrac{z}{2x+y}=\dfrac{x^2}{2xy+xz}+\dfrac{y^2}{2zy+xy}+\dfrac{z^2}{2xz+xz}\ge\dfrac{\left(x+y+z\right)^2}{3\left(xy+yz+xz\right)}=1\)

dau"=" xay ra<=>x=y=z=1/3

Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:40

\(a+\dfrac{1}{a+1}=\dfrac{a^2+a+1}{a+1}=\dfrac{4a^2+4a+4}{4\left(a+1\right)}=\dfrac{3\left(a+1\right)^2+\left(a-1\right)^2}{4\left(a+1\right)}\ge\dfrac{3\left(a+1\right)^2}{4\left(a+1\right)}=\dfrac{3}{4}\left(a+1\right)\ge\dfrac{3}{2}\sqrt{a}\)

Tương tự: \(b+\dfrac{1}{b+1}\ge\dfrac{3}{2}\sqrt{b}\) ; \(c+\dfrac{1}{c+1}\ge\dfrac{3}{2}\sqrt{c}\)

Nhân vế:

\(VT\ge\dfrac{27}{8}\sqrt{abc}\ge\dfrac{27}{8}\) (đpcm)

thanhluan
Xem chi tiết
Vu Le
1 tháng 2 2015 lúc 19:01

(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))>=\(3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

Do đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)>=\(\frac{9}{a+b+c}=9\)(không phải chỉ >=1 đâu bạn nhé)

Phan Văn Hiếu
Xem chi tiết
Đinh Đức Hùng
5 tháng 9 2017 lúc 20:58

Áp dụng bđt AM - GM ta có :

\(\sqrt{b-1}\le\frac{b-1+1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)

\(\sqrt{a-1}\le\frac{a-1+1}{2}=\frac{a}{2}\Rightarrow b\sqrt{a-1}\le\frac{ba}{2}\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)(đpcm)

b2 dễ tự lm

Hội Buôn Bán Nick NRO Sv...
5 tháng 9 2017 lúc 20:59

b2 x2 là x mũ 2. y2 là y mũ 2 .

yx−y=x​2​​+2

yx−y−x​2​​−2=0

x=​−2​​−y+√​y​2​​−4y−8​​​​​,​−2​​−y−√​y​2​​−4y−8​​​​​

x=​−2​​−y+√​y​2​​−4y−8​​​​​,​−2​​−y−√​y​2​​−4y−8​​​​​

x=−​2​​−y+√​y​2​​−4y−8​​​​​,−​2​​−y−√​y​2​​−4y−8​​​​​

k sau giúp tiếp 

Phan Văn Hiếu
5 tháng 9 2017 lúc 21:01

b1 ml làm đc òi nha

Ryan Park
Xem chi tiết
Thắng Nguyễn
26 tháng 1 2018 lúc 18:59

Let \(\left(a;b;c\right)\rightarrow\left(\frac{yz}{x^2};\frac{xz}{y^2};\frac{xy}{z^2}\right)\)  we have:

\(\frac{x^4}{y^2z^2+x^2yz+x^4}+\frac{y^4}{x^2z^2+xy^2z+y^4}+\frac{z^4}{x^2y^2+xyz^2+z^4}\ge1\left(○\right)\)

By Cauchy-Schwarz: \(L-H-S_{\left(○\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2}\)

Hence we need to prove: \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2}\ge1\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\geΣ_{cyc}x^4+Σ_{cyc}x^2yz+Σ_{cyc}y^2z^2\)

\(\Leftrightarrow x^2yz+xyz^2+xy^2z\ge x^2y^2+y^2z^2+z^2x^2\)

Follow AM-GM's ineq, it's enough to prove the last ineq

The equality occurs when \(a=b=c=1\)

tai
Xem chi tiết
nguyễn đức long
21 tháng 4 2015 lúc 14:59

chữ xấu thế em, anh không nhìn thấy

A Lan
Xem chi tiết
Pham Van Hung
Xem chi tiết
Agatsuma Zenitsu
23 tháng 1 2020 lúc 22:08

Ta chứng minh: \(2\left(a^2-ab+b^2\right)^2\ge b^4+a^4\left(1\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)^2\ge0\)( Luôn đúng \(\forall a;b\))

Tương tự có: \(2\left(b^2-bc+c^2\right)^2\ge b^4+c^4\left(2\right)\)

Và: \(2\left(c^2-ca+a^2\right)^2\ge a^4+c^4\left(3\right)\)

Ta nhân các vế trên ta được: \(8\left(a^2-ab+b^2\right)^2\left(b^2-bc+c^2\right)^2\left(c^2-ca+a^2\right)^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)=8\)

Hay: \(\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\ge1\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Khách vãng lai đã xóa
Buffalo
24 tháng 1 2020 lúc 7:18

Trâu bò:

Giả sử c = min{a,b,c}

Đặt a =x +c; b = y +c;c=c thì x,y >= 0

C/m: \(8\left[\left(a^2-ab+b^2\right)\left(b^2-bc+c^2\right)\left(c^2-ca+a^2\right)\right]^2\ge\left(a^4+b^4\right)\left(b^4+c^4\right)\left(c^4+a^4\right)\)

Xét hiệu hai vế thu được:

\(c*(12*x^3*y^8-8*x^4*y^7+16*x^5*y^6+16*x^6*y^5-8*x^7*y^4+12*x^8*y^3)+c^2*(18*x^2*y^8-16*x^3*y^7+60*x^4*y^6+60*x^6*y^4-16*x^7*y^3+18*x^8*y^2)+c^3*(12*x*y^8+16*x^2*y^7+88*x^4*y^5+88*x^5*y^4+16*x^7*y^2+12*x^8*y)+c^4*(6*y^8+16*x*y^7+32*x^2*y^6-32*x^3*y^5+242*x^4*y^4-32*x^5*y^3+32*x^6*y^2+16*x^7*y+6*x^8)+7*x^4*y^8+c^5*(16*y^7+16*x*y^6+88*x^3*y^4+88*x^4*y^3+16*x^6*y+16*x^7)-16*x^5*y^7+c^6*(24*y^6-16*x*y^5+60*x^2*y^4+60*x^4*y^2-16*x^5*y+24*x^6)+24*x^6*y^6+c^7*(16*y^5-8*x*y^4+16*x^2*y^3+16*x^3*y^2-8*x^4*y+16*x^5)-16*x^7*y^5+c^8*(8*y^4-16*x*y^3+24*x^2*y^2-16*x^3*y+8*x^4)+7*x^8*y^4\)Dấu " * " là nhân.

Dễ thấy nó đúng -> qed

Khách vãng lai đã xóa