Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Mỹ vân

Cho 3 số thực dương a,b,c thoả mãn:\(abc\ge1\) .Chứng minh rằng :

\(\left(a+\dfrac{1}{a+1}\right)\left(b+\dfrac{1}{b+1}\right)\left(c+\dfrac{1}{c+1}\right)\ge\dfrac{27}{8}\)

Nguyễn Việt Lâm
30 tháng 8 2021 lúc 20:40

\(a+\dfrac{1}{a+1}=\dfrac{a^2+a+1}{a+1}=\dfrac{4a^2+4a+4}{4\left(a+1\right)}=\dfrac{3\left(a+1\right)^2+\left(a-1\right)^2}{4\left(a+1\right)}\ge\dfrac{3\left(a+1\right)^2}{4\left(a+1\right)}=\dfrac{3}{4}\left(a+1\right)\ge\dfrac{3}{2}\sqrt{a}\)

Tương tự: \(b+\dfrac{1}{b+1}\ge\dfrac{3}{2}\sqrt{b}\) ; \(c+\dfrac{1}{c+1}\ge\dfrac{3}{2}\sqrt{c}\)

Nhân vế:

\(VT\ge\dfrac{27}{8}\sqrt{abc}\ge\dfrac{27}{8}\) (đpcm)


Các câu hỏi tương tự
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
Mai Thị Thanh
Xem chi tiết
vvvvvvvv
Xem chi tiết