Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiệt Nguyễn
Xem chi tiết
Tran Le Khanh Linh
25 tháng 7 2020 lúc 19:51

ta có a(1-b) \(\ge\)a2(1-b); b(1-c) \(\ge\)b2(1-c); c(1-a) \(\ge\)c2(1-a)

suy ra (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)a(1-b)+b(1-c)+c(1-a)

=> (a2+b2+c2)-(a2b+b2c+c2a) \(\le\)(a+b+c)-(ab+bc+ca)

mà (1-a)(1-b)(1-c) +abc\(\ge\)0 => 1\(\ge\)(a+b+c)-(ab+bc+ca)

vậy a2+b2+c2 \(\le\)1+a2b+b2c+c2a

dấu đẳng thức xảy ra <=> trong 3 số có 1 số bằng 0 và 1 số bằng 1

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
3 tháng 8 2020 lúc 20:51

Ta có: \(a.\left(1-b\right)\ge a^2.\left(1-b\right)\)

          \(b.\left(1-c\right)\ge b^2.\left(1-c\right)\)

          \(c.\left(1-a\right)\ge c^2.\left(1-a\right)\)

Suy ra \(\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le a.\left(1-b\right)+b.\left(1-c\right)+c.\left(1-a\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\le\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Mà \(\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc\ge0\) \(\Rightarrow1\ge\left(a+b+c\right)-\left(ab+bc+ca\right)\)

Vậy \(a^2+b^2+c^2\le1+a^2b+b^2c+c^2a\)

Dấu dẳng thức xảy ra \(\Leftrightarrow\)trong ba số đó có một số bằng 0, một số bằng 1 

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
25 tháng 7 2020 lúc 20:16

Trả lời:

Ta có: \(0\le a,b,c\le1\Rightarrow a.\left(1-a\right).\left(1-b\right)\ge0\)

                                       \(\Leftrightarrow a-ab-a^2+ab\ge0\)

                                       \(\Leftrightarrow a^2b\ge ab-a+a^2\)

Tương tự  \(b^2c\ge bc-b+b^2\)

                 \(c^2a\ge ca-c+c^2\)

\(\Rightarrow a^2b+b^2c+c^2a+1\ge1+ab+bc+ca-a-b-c+a^2+b^2+c^2\)

                                                  \(\ge\left(1-a\right).\left(1-b\right).\left(1-c\right)+abc+a^2+b^2+c^2\)

                                                  \(\ge a^2+b^2+c^2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0,1,1\right),\left(1,0,1\right),\left(1,1,0\right),\left(0,0,1\right),\left(0,1,0\right),\left(1,0,0\right)\right\}\)

Khách vãng lai đã xóa
Hoàng Ngọc Tuyết Nung
Xem chi tiết
chu ngọc trâm anh
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Phùng Minh Quân
5 tháng 7 2019 lúc 13:31

\(0\le a,b,c\le1\)\(\Rightarrow\)\(\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-a\le0\\b^2-b\le0\\c^2-c\le0\end{cases}}}\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a^2-a\right)\left(b-1\right)\ge0\\\left(b^2-b\right)\left(c-1\right)\ge0\\\left(c^2-c\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2+ab-a\\b^2c\ge b^2+bc-b\\c^2a\ge c^2+ca-c\end{cases}}}\)

\(\Rightarrow\)\(a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)-\left(a+b+c\right)\) (1) 

Và \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\\\left(c-1\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}ab\ge a+b-1\\bc\ge b+c-1\\ca\ge c+a-1\end{cases}}}\)

\(\Rightarrow\)\(ab+bc+ca\ge2\left(a+b+c\right)-3\) (2) 

(1), (2) \(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\)

Lại có: \(\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\Leftrightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\\c^3\le c^2\end{cases}}}\)

\(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\ge2\left(a^3+b^3+c^3\right)=2a^3+2b^3+2c^3\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1;b=1;c=0\) và các hoán vị 

Lê Việt	Hoàng
12 tháng 6 2020 lúc 20:49

Phùng Minh Quân ơi câu trả lời của bạn dài quá. Bạn có thể trả lời ngắn hơn mà.

Khách vãng lai đã xóa
dam thu a
Xem chi tiết
dbrby
Xem chi tiết
Akai Haruma
5 tháng 7 2019 lúc 17:36

Lời giải:
Vì $a,b,c\in [0;1]$ nên: \(a(a-1)(b-1)\geq 0\)

\(\Leftrightarrow a(ab-a-b+1)\geq 0\)

\(\Leftrightarrow a^2b\geq a^2+ab-a\)

Tương tự với \(b^2c; c^2a\) suy ra:

\(a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2+ab+bc+ac+1-a-b-c(1)\)

Lại có:

\((a-1)(b-1)(c-1)\leq 0\)

\(\Leftrightarrow (ab-a-b+1)(c-1)\leq 0\)

\(\Leftrightarrow abc-(ab+bc+ac)+a+b+c-1\leq 0\)

\(\Leftrightarrow ab+bc+ac+1\geq a+b+c+abc\geq a+b+c(2)\) do $abc\geq 0$

Từ \((1);(2)\Rightarrow a^2b+b^2c+c^2a+1\geq a^2+b^2+c^2\) (đpcm)

Nguyễn Trần
Xem chi tiết
 Mashiro Shiina
4 tháng 12 2018 lúc 12:52

\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)

\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)

\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)

\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)

CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)

Thật vậy:

\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)

\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)

\(=1\)

\(2A=3-P\le3-1=2\)

\(2A\le2\Leftrightarrow A\le1\)

\("="\Leftrightarrow a=b=c\)

bach nhac lam
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 7 2020 lúc 17:56

Đặt \(\left\{{}\begin{matrix}a+b+c=p\Rightarrow p=2\\ab+bc+ca=q\\abc=r\end{matrix}\right.\) \(\Rightarrow0\le q\le\frac{1}{3}p^2=\frac{4}{3}\)

Ta cần chứng minh: \(q^2-2pr-2r\le1\Leftrightarrow q^2-6r\le1\)

TH1: \(0\le q< 1\Rightarrow q^2-6r\le q^2< 1\) \(\Rightarrow\) BĐT đúng

TH2: \(1\le q\le\frac{4}{3}\)

Theo Schur: \(r\ge\frac{p\left(4q-p^2\right)}{9}=\frac{8\left(q-1\right)}{9}\Rightarrow q^2-6r\le q^2-\frac{16}{3}\left(q-1\right)\)

Do đó ta chỉ cần chứng minh: \(q^2-\frac{16}{3}\left(q-1\right)\le1\)

\(\Leftrightarrow3q^2-16q+13\le0\)

\(\Leftrightarrow\left(q-1\right)\left(3q-13\right)\le0\) (luôn đúng \(\forall x\in\left[1;\frac{4}{3}\right]\))

BĐT được chứng minh hoàn tất

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoán vị

bach nhac lam
5 tháng 7 2020 lúc 16:19

@Nguyễn Việt Lâm, @Akai Haruma, @tth_new

giúp em với ạ! Em cảm ơn ạ!

tthnew
6 tháng 7 2020 lúc 7:15

Ta chứng minh bất đẳng thức mạnh hơn: \(a^2b^2+b^2c^2+c^2a^2+\frac{11}{8}abc\le1\)

Thật vậy: \(VP-VT=\frac{1}{32}\sum\left(a-b\right)^2\left(a+b-c\right)^2+\frac{5}{16}\sum ab\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi $a=b=1,c=0$ và các hoán vị.

Nguyễn Đức Gia Minh
Xem chi tiết

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

Khách vãng lai đã xóa
Nguyễn Linh Chi
28 tháng 2 2020 lúc 16:58

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

Khách vãng lai đã xóa

chứng minh bđt "Lại có" ạ

Khách vãng lai đã xóa