Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạm Đoàn
Xem chi tiết
nguyen ngoc khanh linh
Xem chi tiết
tth_new
30 tháng 8 2019 lúc 9:13

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

tth_new
30 tháng 8 2019 lúc 9:14

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<

Nyatmax
30 tháng 8 2019 lúc 12:15

a.\(DK:x\in R,1\le y\le5\)

.\(\Leftrightarrow\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}=1\)

Ta co:\(\sqrt{4-\left(3-y\right)^2}\le2\left(1\right)\)

          \(\sqrt{\left(x-3\right)^2+1}\ge1\left(1\right)\)

Tru ve voi ve cua (1) va (2) ta duoc:

\(\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}\le1\)

Dau '=' xay ra khi \(x=y=3\)

Vay nghiem cua PT la \(x=y=3\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 10:35

loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  loading...  

Mai Vu
Xem chi tiết
Nguyễn Ngọc Ni
Xem chi tiết
Nào Ai Biết
12 tháng 7 2018 lúc 17:43

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

Nào Ai Biết
12 tháng 7 2018 lúc 17:52

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

Phùng Khánh Linh
12 tháng 7 2018 lúc 17:53

\(a.\sqrt{x^2+2x+5}=-x^2-2x+1\)

Ta có : \(VT=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)\(2\)

\(VP=-x^2-2x+1=-\left(x^2+2x+1\right)+2=-\left(x+1\right)^2+2\)\(2\)

Để : \(\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

\(x=-1\)

KL...........

\(b.\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta có : \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\text{≥}1\left(1\right)\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\text{≥}3\left(2\right)\)

\(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\text{≥}4\left(3\right)\)

Từ ( 1 ; 2 ) , ta có :
\(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\text{≥}4\left(4\right)\)

Từ ( 3 ; 4 ) để : \(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=-\left(x-3\right)^2+4\)

\(x=3\)

KL..........

Hà Phương
Xem chi tiết
阮芳邵族
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Nguyễn Thành Trương
22 tháng 1 2020 lúc 8:04

$$\left\{\begin{aligned} &\sqrt{2x+y+5}-\sqrt{3-x-y}=x^3-3x^2-10y+6 &&(1) \\ &x^3-6x^2+13x=y^3+y+10 &&(2)\end{aligned}\right.$$
Lời giải. Điều kiện: $2x+y+5 \ge 0$ và $3-x-y \ge 0.$ Phương trình (2) có thể viết lại thành $$(x^3-6x^2+12x-8)+(x-2)=y^3+y,$$ hay $$(x-2)^3+(x-2)=y^3+y.$$ Phương trình trên có dạng $f(x-2)=f(y)$ với $f(t)=t^3+t.$ Do $f(t)$ là hàm liên tục và tăng nghiêm ngặt trên $\mathbb R$ nên từ đây, ta có $y=x-2.$ Thay vào (1), ta được $$\sqrt{3x+3}-\sqrt{5-2x}=x^3-3x^2-10x+26. \text{ }(3)$$ Lúc này, ta có điều kiện tương ứng cho $x$ là $-1 \le x \le \frac{5}{2}.$ Với điều kiện này, phương trình (3) tương đương với $$ \left(\sqrt{3x+3}-3\right)+\left(1-\sqrt{5-2x}\right)-(x^3-3x^2-10x+24)=0,$$ hay $$\frac{3(x-2)}{\sqrt{3x+3}+3}+\frac{2(x-2)}{\sqrt{5-2x}+1}+(x-2)(4-x)(x+3)=0.$$ Đưa $x-2$ ra làm nhân tử chung, ta được $$(x-2)\left[\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}+(4-x)(x+3)\right]=0.$$ Do $-1 \le x\le \frac{5}{2}$ nên dễ thấy $$\frac{3}{\sqrt{3x+3}+3}+\frac{2}{\sqrt{5-2x}+1}+(4-x)(x+3)>0.$$ Từ đây, ta suy ra ngay $x=2$ và $y=x-2=0.$ Vậy hệ có nghiệm duy nhất $(x,\,y)=(2,\,0).$

Khách vãng lai đã xóa