(x2+7)(x2-49)<0
Tìm các số nguyên x, biết:
a, (22 + 5)(x2 + 25) = 0
b, (x2 + 7)(x2 - 49) < 0
c, (x2 - 7)(x2 - 49) < 0
d, (x2 - 36)(x2 - 81) ≤ 0
(x2 - 7)(x2 - 49) < 0
=> x2 - 7 và x2 - 49 trái dấu
Nhận xét: x2 - 7 > x2 - 9 nên để x2 - 7 và x2 - 49 trái dấu thì x2 - 7 > 0 và x2 - 49 < 0
x2 - 7 > 0 => x2 > 7
x2 - 49 < 0 => x2 < 49
=> 7 < x2 < 49. Vì x nguyên nên x2 = 9; 16 ; 25; 36
x2 = 9 => x = -3 hoặc x = 3
x2 = 16 => x = -4 hoặc 4
x2 = 25 => x = -5 ; 5
x2 = 36 => x = 6;-6
Vậy ....
Tìm các số nguyên x,biết :
1.(x2+7).(x2-49)<0
2.(x2-7).(x2-49)<0
3. x.(x-3)>0
a)\(\left(x2+7\right).\left(x2-49\right)< 0\)
\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\) và \(\left(x2-49\right)\) khác dấu nhau .
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)
Vì \(\left(x2+7\right)\) > \(\left(x2-49\right)\)
Nên ta có:
\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)
Vậy hai số nguyên đó là -7 và 49 .
Còn phần còn lại bạn làm tương tự nhé !
a, x15 =x
b, 1/x.(x+1)=1/30
c, (x2-7).(x2-25)=0
d, (x2-3).(x2-11)<0
e, (x2+4).(x2-49)<0
giải giúp mk vs
c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)
(2x-1)(x+7)=x2 -49
\(\left(2x-1\right)\left(x+7\right)=x^2-49\)
\(\Leftrightarrow\left(2x-1\right)\left(x+7\right)=\left(x-7\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x+7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-6\end{matrix}\right.\)
(2x-1)(x+7)=\(x^2\) -49
=> (2x-1)(x+7)=(x-7)(x+7)
=> (2x-1)(x+7)-(x-7)(x+7)=0
=>(2x-1-x+7)(x+7)=0
=> x+6=0 hoặc x+7=0
=> x=-6 hoặc x=-7
1) (1-x)(5x+3)=(3x-7)(x-1)
2) (x-2)(x+1)=x2-4
3) 2x3+3x2-32x=48
4) x2+2x-15=0
5) 2x(2x-3)=(3-2x)(2-5x)
6) x3-5x2+6x=0
7) (x2-5)(x+3)=0
8) (x+7)(3x-1)=49-x2
\(\left(1-x\right)\left(5x+3\right)=\left(3x-7\right)\left(x-1\right)\)
\(< =>\left(1-x\right)\left(5x+3+3x-7\right)=0\)
\(< =>\left(1-x\right)\left(8x-4\right)=0\)
\(< =>\orbr{\begin{cases}1-x=0\\8x-4=0\end{cases}< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)
\(\left(x-2\right)\left(x+1\right)=x^2-4\)
\(< =>\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(< =>\left(x-2\right)\left(x+1-x-2\right)=0\)
\(< =>-1\left(x-2\right)=0\)
\(< =>2-x=0< =>x=2\)
\(2x^3+3x^2-32x=48\)
\(< =>x^2\left(2x+3\right)-16\left(2x+3\right)=0\)
\(< =>\left(x^2-16\right)\left(2x+3\right)=0\)
\(< =>\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(< =>\hept{\begin{cases}x=4\\x=-4\\x=-\frac{3}{2}\end{cases}}\)
x2-56x + 49 với x = 7/4
Sửa đề: \(16x^2-56x+49=\left(4x-7\right)^2=\left(4\cdot\dfrac{7}{4}-7\right)^2=0^2=0\)
Tính giá trị của biểu thức
a) M = x 2 - 8x + 7 tại x = 49;
b) N = x 4 - 2 x 3 + x 2 tại x = 10;
c) P = m 6 - 2 m 4 - m + m 2 + m 3 biết m 3 - m + 2 = 0.
a) x2-4x
b)x2-5xy+x-5y
c)x2-10xy-49+25y2
a)x2-4x=x(x-4)
b)x2-5xy+x-5y=x(x-5y)+(x-5y)=(x+1)(x-5y)
c)x2-10xy-49+25y2=x2-10xy+25y2-49
=(x-5)2-72=(x-5-7)(x-5+7)
=(x-12)(x+2)