Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thuỳ Lê Minh
Xem chi tiết
YangSu
11 tháng 1 2023 lúc 19:41

\(8,1-\left(x-6\right)=4\left(2-2x\right)\)

\(\Leftrightarrow1-x+6=8-8x\)

\(\Leftrightarrow-x+8x=8-1-6\)

\(\Leftrightarrow7x=1\)

\(\Leftrightarrow x=\dfrac{1}{7}\)

\(9,\left(3x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)

\(10,\left(x+3\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)

 

2611
11 tháng 1 2023 lúc 19:47

`8)1-(x-5)=4(2-2x)`

`<=>1-x+5=8-6x`

`<=>5x=2<=>x=2/5`

`9)(3x-2)(x+5)=0`

`<=>[(x=2/3),(x=-5):}`

`10)(x+3)(x^2+2)=0`

  Mà `x^2+2 > 0 AA x`

 `=>x+3=0`

`<=>x=-3`

`11)(5x-1)(x^2-9)=0`

`<=>(5x-1)(x-3)(x+3)=0`

`<=>[(x=1/5),(x=3),(x=-3):}`

`12)x(x-3)+3(x-3)=0`

`<=>(x-3)(x+3)=0`

`<=>[(x=3),(x=-3):}`

`13)x(x-5)-4x+20=0`

`<=>x(x-5)-4(x-5)=0`

`<=>(x-5)(x-4)=0`

`<=>[(x=5),(x=4):}`

`14)x^2+4x-5=0`

`<=>x^2+5x-x-5=0`

`<=>(x+5)(x-1)=0`

`<=>[(x=-5),(x=1):}`

Hquynh
11 tháng 1 2023 lúc 19:48

\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)

Nguyễn Ngọc k10
Xem chi tiết
YangSu
7 tháng 7 2023 lúc 12:18

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

bùi thu linh
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 21:22

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)

Suy ra: \(3x^2+7x-10=0\)

\(\Leftrightarrow3x^2-3x+10x-10=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)

Trần Mạnh
21 tháng 2 2021 lúc 21:26

a/ \(\dfrac{3x^2+7x-10}{x}=0\)

\(< =>3x^2+7x-10=0\)

\(< =>3x^2+10x-3x-10=0\)

\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)

\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)

\(< =>\left(3x+10\right)\left(x-1\right)=0\)

\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)

Vậy tập nghiệm của .....

 

 

 

tghjkjjhttrđfdđ
Xem chi tiết
Trí Tiên
8 tháng 2 2020 lúc 15:21

\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )

Vậy : ...

Khách vãng lai đã xóa
Minh Nguyen
8 tháng 2 2020 lúc 15:32

1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-32x+12=0\)

\(\Leftrightarrow5x^2-30x-2x+12=0\)

\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)

2/ \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x+1=0\)

hoặc   \(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc   \(x=-1\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)

Khách vãng lai đã xóa
Minh Nguyen
8 tháng 2 2020 lúc 15:43

3/ \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)

Đặt \(t=x^2-4\), ta có :

\(t\left(t-6\right)-72=0\)

\(\Leftrightarrow t^2-6t-72=0\)

\(\Leftrightarrow t^2-12t+6t-72=0\)

\(\Leftrightarrow t\left(t-12\right)+6\left(t-12\right)=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-12=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\left(ktm\right)\\x^2-16=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x=\pm4\)

Vậy tập nghiệm của phương trình là : \(S=\left\{4;-4\right\}\)

4/ \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc   \(x+2=0\)

hoặc  \(2x+1=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc  \(x=-2\)

hoặc  \(x=-\frac{1}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;\frac{1}{2}\right\}\)

Khách vãng lai đã xóa
Thảo Nguyễn
Xem chi tiết
luyen hong dung
24 tháng 1 2018 lúc 16:03

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
30 tháng 10 2021 lúc 19:29

Mn ơi giúp mk với , cảm ơn nhiều !!

Nguyễn Hà Giang
30 tháng 10 2021 lúc 20:00

1) (x−1):0,16=−9:(1−x)

\(\Rightarrow\)(x-1):0,16= 9:(-1):(x-1)

\(\Rightarrow\)(x-1):0,16=9:(x-1)

\(\Rightarrow\)(x-1).(x-1)= 9. 0,16

\(\Rightarrow\)(x-1)\(^2\)= 1,44=1,2\(^2\)=(-1,2)\(^2\)

\(\Rightarrow\)x-1=1,2\(\Rightarrow\)x=2,2

hoặc x-1= -1,2\(\Rightarrow\)x= -0,2

Vậy x =2,2 ; x=0,2

...............................

 

Đinh Khánh linh
Xem chi tiết
Nguyễn Ngọc Lộc
24 tháng 3 2020 lúc 22:59

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

Khách vãng lai đã xóa
Thảo Nguyên
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 12:54

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 12:55

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
26 tháng 2 2020 lúc 12:58

5.

\(x\left(2x-3\right)=-4\left(2x-3\right)\)

\(\Leftrightarrow x\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\frac{3}{2}\end{matrix}\right.\)

6.

\(3x-33-2x-22=2011\)

\(\Leftrightarrow x=2066\)

7.

\(x^2-8x+16-\left(x^2-4x-12\right)=0\)

\(\Leftrightarrow-4x+28=0\Rightarrow x=7\)

Khách vãng lai đã xóa