phân tích dùm mình cái đây \(x^2_2+x^2_2+3x1x2=0\)
bạn nào có thể biến đổi cái này để mình dùng vi-ét cái
\(x^2_1+2x^2_2=3\) biến đổi hộ cái
cho pt : \(3x^2-4x-8=0\)
a) Chứng minh pt có 2 nghiệm phân biệt
b) Không giải pt hãy tính: A= \(\left(x_1-1\right)x_1+\left(x_2-1\right)x_2\) B=\(x^2_1x^2_2-\left(x_1-x_2\right)^2\)
C= \(2x^2_1+2x^2_2-x^2_1x_2-x^2_2x_1\)
\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)
\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)
giả sử \(x_1,x_2\) là nghiệm của phương trình \(x^2-2\sqrt{5}x+2\)=0 Tính giá trị biểu thức E=\(\dfrac{x_1^2+x_1x_2+x^2_2}{x_1^2+x^2_2}\)
\(\Delta'=\left(-\sqrt{5}\right)^2-1.2=5-2=3>0\)
Suy ra pt luôn có 2 nghiệm phân biệt
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2\sqrt{5}\\x_1x_2=2\end{matrix}\right.\)
\(E=\dfrac{x^2_1+x_1x_2+x^2_2}{x^2_1+x^2_2}\\
=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}\\
=\dfrac{\left(2\sqrt{5}\right)^2-2}{\left(2\sqrt{5}\right)^2-2.2}\\
=\dfrac{20-2}{20-4}\\
=\dfrac{18}{16}\\
=\dfrac{9}{8}\)
\(E=\dfrac{\left(x_1+x_2\right)^2-x_1x_2}{\left(x_1+x_2\right)^2-2x_1x_2}=\dfrac{4.5-2}{4.5-2.2}=\dfrac{18}{16}=\dfrac{9}{8}\)
1) Cho pt \(5x^2-7x+1=0\)
a) C minh pt có 2 nghiệm phân biệt \(x_1,x_2\)
b) Tính giá trị biểu thức \(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x^2_2}+x^2_2\)
2) Cho pt \(x^2-4+1-2m=0\) (x là ẩn số)
a) tìm m để pt có nghiệm
b) tìm m để 2 nghiệm \(x_1,x_2\) của pt thỏa \(x^2_1+x^2_2=6\)
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
`x^2 -2x+m-3=0`
Tìm m để pt có 2 nghiệm phân biệt `x_1, x_2` thỏa mãn \(x_1^2+4x_1x_2+3x^2_2=0\)
\(\Delta'=1-\left(m-3\right)=4-m>0\Rightarrow m< 4\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+4x_1x_2+3x_2^2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+3x_2\right)=0\)
\(\Leftrightarrow2\left(x_1+3x_2\right)=0\)
\(\Leftrightarrow x_1=-3x_2\)
Thế vào \(x_1+x_2=2\Rightarrow-2x_2=2\)
\(\Rightarrow x_2=-1\Rightarrow x_1=3\)
Thế vào \(x_1x_2=m-3\)
\(\Rightarrow m-3=-3\Rightarrow m=0\) (thỏa mãn)
`x^2 -2(m+1)x+2m+10=0`
Tìm m để PT có 2 nghiệm phân biệt `x_1 ,x_2` sao cho \(A=14x_1x_2+x_1^2+x^2_2\) đạt min
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\)
Pt có 2 nghiệm khi \(m^2-9\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
\(A=x_1^2+x_2^2+14x_1x_2=\left(x_1+x_2\right)^2+12x_1x_2\)
\(=4\left(m+1\right)^2+12\left(2m+10\right)\)
\(=4\left(m+4\right)^2+60\ge60\)
Dấu "=" xảy ra khi \(m+4=0\Rightarrow m=-4\) (thỏa mãn)
\(x^2-2mx+2m-3=0\) (1)
tìm giá trị nguyên m nhỏ nhất để (1) có 2 nghiệm phân biệt \(x_{1;}x_2\) thỏa mãn \(9-x_1^2-x^2_2>=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\forall m\)
=>Phương trình (1) luôn có hai nghiệm phân biệt
Áp dụng Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
\(9-x_1^2-x_2^2>=0\)
=>\(9-\left(x_1^2+x_2^2\right)>=0\)
=>\(9-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]>=0\)
=>\(9-\left[\left(2m\right)^2-2\left(2m-3\right)\right]>=0\)
=>\(9-4m^2+4m-6>=0\)
=>\(-4m^2+4m+3>=0\)
=>\(4m^2-4m-3< =0\)
=>\(4m^2-6m+2m-3< =0\)
=>(2m-3)(2m+1)<=0
=>\(-\dfrac{1}{2}< =m< =\dfrac{3}{2}\)
mà m là số nguyên nhỏ nhất
nên m=0
Cho phương trình \(x^2-2\left(m+4\right)x+m^2-8=0\)
Tìm m để phương trình thỏa mãn \(x_1,x_2\) thỏa mãn:
\(A=x^2_1+x^2_2-x_1-x_2\) đạt giá trị nhỏ nhất.
\(B=x^2_1+x^2_2-x_1x_2\) đạt giá trị nhỏ nhất.
\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)
\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)
Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)
\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)
Bmin=-168\(\Leftrightarrow\)m=-16
\(x^2-2\sqrt{3}x+1=0\) có 2 nghiệm phân biệt `x_1 ,x_2`. Tính
a) `x_1 -x_2`
b) \(\dfrac{3x^2_1+5x_1x_2+3x^2_2}{4x_1^3.x_2+4x_1.x^3_2}\)
a: \(x_1+x_2=-\dfrac{b}{a}=2\sqrt{3};x_1\cdot x_2=\dfrac{c}{a}=1\)
Đặt \(A=x_1-x_2\)
=>\(A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2\sqrt{3}\right)^2-4\cdot1=12-4=8\)
=>\(\left[{}\begin{matrix}x_1-x_2=2\sqrt{2}\\x_1-x_2=-2\sqrt{2}\end{matrix}\right.\)
b: \(\dfrac{3x_1^2+5x_1x_2+3x_2^2}{4x_1^3\cdot x_2+4x_1\cdot x_2^3}\)
\(=\dfrac{3\left(x_1^2+x_2^2\right)+5x_1x_2}{4x_1x_2\left(x_1^2+x_2^2\right)}\)
\(=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+5x_1x_2}{4x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)
\(=\dfrac{3\left(x_1+x_2\right)^2-x_1x_2}{4x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}\)
\(=\dfrac{3\cdot12-1}{4\cdot1\cdot\left[12-2\cdot1\right]}=\dfrac{35}{4\cdot10}=\dfrac{7}{8}\)