f(1/3):f(-1/2):g(-5):g(1/3)\(\dfrac{ }{ }\)
2
a.cho hàm số y=f(x)=\(\dfrac{2}{3}x\).Tính f(-2),f(-1),f(0),f(\(\dfrac{1}{2}\)),f(1),f(2),f(3).
b,
cho hàm số y=g(x)=\(\dfrac{2}{3}x\)+3.Tính g(-2),g(-1),g(0),g(\(\dfrac{1}{2}\)),g(1),g(2),g(3)
c.có nhận xét gì về giá trị 2 hàm số đã cho ở trên khi biến x lấy cùng 1 giá trị
c: Ở hai hàm số trên, nếu lấy biến x cùng một giá trị thì f(x) sẽ nhỏ hơn g(x) 3 đơn vị
e) D = \(\dfrac{-5}{6}+\dfrac{-7}{12}-\dfrac{1}{3}\)
f) F = \(\dfrac{-3}{4}+\dfrac{1}{3}-\dfrac{-5}{18}\)
g) G = \(\dfrac{19}{9}-\dfrac{-4}{11}+\dfrac{2}{3}\)
h) H = \(\dfrac{5}{12}+\dfrac{-7}{4}-\dfrac{1}{-8}\)
e: \(D=\dfrac{-10}{12}-\dfrac{7}{12}-\dfrac{4}{12}=\dfrac{-21}{12}=-\dfrac{7}{4}\)
f: \(F=\dfrac{-27}{36}+\dfrac{12}{36}+\dfrac{10}{36}=\dfrac{-5}{36}\)
g: \(G=\dfrac{209}{99}+\dfrac{36}{99}+\dfrac{66}{99}=\dfrac{311}{99}\)
h: \(H=\dfrac{10}{24}-\dfrac{42}{24}+\dfrac{3}{24}=-\dfrac{29}{24}\)
\(D=\dfrac{-5}{6}+\dfrac{-7}{12}-\dfrac{1}{3}=-\dfrac{7}{4}\)
\(F=\dfrac{-3}{4}+\dfrac{1}{3}-\dfrac{-5}{18}=-\dfrac{5}{36}\)
\(G=\dfrac{19}{9}-\dfrac{-4}{11}+\dfrac{2}{3}=\dfrac{311}{99}\)
\(H=\dfrac{5}{12}+\dfrac{-7}{4}-\dfrac{1}{-8}=-\dfrac{29}{24}\)
\(e,D=\dfrac{-5}{6}+\dfrac{-7}{12}-\dfrac{1}{3}=\dfrac{-10}{12}+\dfrac{-7}{12}-\dfrac{4}{12}=\dfrac{\left(-10\right)+\left(-7\right)-4}{12}=\dfrac{-21}{12}=\dfrac{-7}{4}\\ f,F=\dfrac{-3}{4}+\dfrac{1}{3}-\dfrac{-5}{18} =\dfrac{-27}{36}+\dfrac{12}{36}-\dfrac{-10}{36}=\dfrac{\left(-27\right)+12-\left(-10\right)}{36}=\dfrac{-5}{36}\)
\(g,G=\dfrac{19}{9}-\dfrac{-4}{11}+\dfrac{2}{3}=\dfrac{209}{99}-\dfrac{-36}{99}+\dfrac{66}{99}=\dfrac{209-\left(-36\right)+66}{99}=\dfrac{311}{99}\\ h,H=\dfrac{5}{12}+\dfrac{-7}{4}-\dfrac{1}{-8}=\dfrac{5}{12}-\dfrac{7}{4}+\dfrac{1}{8}=\dfrac{10}{24}-\dfrac{42}{24}+\dfrac{3}{24}=\dfrac{10-42+3}{24}=\dfrac{-29}{24}\)
Bài 1 (trang 44 SGK Toán 9 Tập 1)
a) Cho hàm số $y=f(x)=\dfrac{2}{3} x$.
Tính $: f(-2): \quad f(-1) ; \quad f(0) ; \quad f\left(\dfrac{1}{2}\right) ; \quad f(1) ; \quad f(2) ;$
b) Cho hàm số $y=g(x)=\dfrac{2}{3} x+3$.
Tính $: g(-2) ; \quad g(-1) ; \quad g(0) ; \quad g\left(\dfrac{1}{2}\right) ; \quad g(1) ; \quad g(2) ; \quad g(3)$
c) Có nhận xét gì về giá trị của hai hàm số đã cho ở trên khi biến $x$ lấy cùng một giá trị?
em xin lỗi nhưng em chưa đủ tuổi để làm bài này xin cáo từ
xin lỗi quản lý olm ạ
a) Ta có:
f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.f(−2)=23.(−2)=−43;f(−1)=23.(−1)=−23;f(0)=23.0=0;f(12)=23.12=13;f(1)=23.1=23;f(2)=23.2=43;f(3)=23.3=2.
b) Ta có:
g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.g(−2)=23.(−2)+3=53;g(−1)=23.(−1)+3=73;g(0)=23.0+3=3;g(12)=23.12+3=103;g(1)=23.1+3=113;g(2)=23.2+3=133;g(3)=23.3+3=5.
c) Khi biến xx lấy cùng một giá trị thì giá trị của hàm số y=f(x)y=f(x) luôn nhỏ hơn giá trị tương ứng của hàm số y=g(x)y=g(x) là 3 đơn vị.
a) +) với f(-2) ta được:\(y=\dfrac{2}{3}.\left(-2\right)=-\dfrac{4}{3}\)
+) với f(-1) ta được:\(y=\dfrac{2}{3}.\left(-1\right)=\dfrac{-2}{3}\)
+) với f(0) ta được:\(y=\dfrac{2}{3}.0=0\)
+) với f(\(\dfrac{1}{2}\)) ta được:\(y=\dfrac{2}{3}.1=\dfrac{2}{3}\)
+) với f(1) ta được:\(y=\dfrac{2}{3}.1=\dfrac{2}{3}\)
+) với f(2) ta được:\(y=\dfrac{2}{3}.2=\dfrac{4}{3}\)
b) Với , ta có:
.
Nếu \(lim\) (x->1) \(\dfrac{f\left(x\right)-5}{x-1}=2\) và lim (x->1) \(\dfrac{g\left(x\right)-1}{x-1}=3\) thì lim (x->1) \(\dfrac{\sqrt{f\left(x\right).g\left(x\right)+4}-3}{x-1}\) bằng mấy
Do \(x-1\rightarrow0\) khi \(x\rightarrow1\) nên \(\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right)-5}{x-1}=2\) hữu hạn khi và chỉ khi \(f\left(x\right)-5=0\) có nghiệm \(x=1\)
\(\Leftrightarrow f\left(1\right)-5=0\Rightarrow f\left(1\right)=5\)
Tương tự ta có \(g\left(1\right)=1\)
Do đó: \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{f\left(x\right).g\left(x\right)+4}-3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{f\left(x\right).g\left(x\right)-5}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left[f\left(x\right)-5\right].g\left(x\right)+5\left[g\left(x\right)-1\right]}{\left(x-1\right)\left(\sqrt{f\left(x\right).g\left(x\right)+4}+3\right)}\)
\(=\left(2.1+5.3\right).\dfrac{1}{\sqrt{5.1+4}+3}=\dfrac{17}{6}\)
Cho hai hàm số f(x)=\(x^2\) và g(x)=3-x
a.tính f(-3), f\(\left(-\dfrac{1}{2}\right)\), f(0), g(1), g(2), g(3)
b,xác định a để 2f(a)=g(a)
b: Ta có: \(2\cdot f\left(a\right)=g\left(a\right)\)
\(\Leftrightarrow2a^2=3-a\)
\(\Leftrightarrow2a^2+a-3=0\)
\(\Leftrightarrow2a^2+3a-2a-3=0\)
\(\Leftrightarrow\left(2a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-\dfrac{3}{2}\end{matrix}\right.\)
cho hàm số y=f(x)=5x-3 vày=g(x)=-4x+1. tính
a)f(-2) - g\(\left(\dfrac{1}{2}\right)\)
b) 2.\(f^2\)(-3) -3.\(g^2\)(-2)
a: f(-2)-g(1/2)
\(=5\left(-2\right)-3+4\cdot\dfrac{1}{2}-1\)
\(=-10-4+2=-10-2=-12\)
b: \(2\cdot f^2\left(-3\right)-3\cdot g^2\left(-2\right)\)
\(=2\cdot\left[5\cdot\left(-3\right)-3\right]^2-3\cdot\left[\left(-4\right)\left(-2\right)+1\right]^2\)
\(=2\cdot\left(-18\right)^2-3\cdot9^2\)
\(=648-3\cdot81=405\)
Giải phương trình \(f'\left(x\right)=g\left(x\right)\) biết :
a) \(f\left(x\right)=\dfrac{1-\cos3x}{3};g\left(x\right)=\left(\cos6x-1\right)\cot3x\)
b) \(f\left(x\right)=\dfrac{1}{2}\cos2x;g\left(x\right)=1-\left(\cos3x+\sin3x\right)^2\)
c) \(f\left(x\right)=\dfrac{1}{2}\sin2x+5\cos x;g\left(x\right)=3\sin^2x+\dfrac{3}{1+\tan^2x}\)
1)Cho hàm số y=f(x)=2/3x. Tính f(-2), f(-1), f(0), f(1/2), f(1), f(2), f(3)
2)Cho hàm số y=g(x)=2/3x+3. Tính g(-2), g(-1), g(0), g(1/2), g(1), g(2), g(3)
3) Cho hàm số y=f(x)=-3/4x. Tính f(-5), f(-4), f(0), f(1/2), f(1), f(a), f(a+1)
1. Cho f(x) và g(x) có đạo hàm trên R. Tính đạo hàm của
a, y=f(x3)-g(x2)
b, y=\(\sqrt{f^3\left(x\right)+g^3\left(x\right)}\)
2. Cho f(x)=\(\dfrac{m-1}{4}\)x4 + \(\dfrac{m-2}{3}\)x3-mx2+3x-1. Giải và biện luận pt: f'(x)=0
1a.
\(y'=3x^2.f'\left(x^3\right)-2x.g'\left(x^2\right)\)
b.
\(y'=\dfrac{3f^2\left(x\right).f'\left(x\right)+3g^2\left(x\right).g'\left(x\right)}{2\sqrt{f^3\left(x\right)+g^3\left(x\right)}}\)
2.
\(f'\left(x\right)=\left(m-1\right)x^3+\left(m-2\right)x^2-2mx+3=0\)
Để ý rằng tổng hệ số của vế trái bằng 1 nên pt luôn có nghiệm \(x=1\), sử dụng lược đồ Hooc-ne ta phân tích được:
\(\Leftrightarrow\left(x-1\right)\left[\left(m-1\right)x^2+\left(2m-3\right)x-3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(m-1\right)x^2+\left(2m-3\right)x-3=0\left(1\right)\end{matrix}\right.\)
Xét (1), với \(m=1\Rightarrow x=-3\)
- Với \(m\ne1\Rightarrow\Delta=\left(2m-3\right)^2+12\left(m-1\right)=4m^2-3\)
Nếu \(\left|m\right|< \dfrac{\sqrt{3}}{2}\Rightarrow\) (1) vô nghiệm \(\Rightarrow f'\left(x\right)=0\) có đúng 1 nghiệm
Nếu \(\left|m\right|>\dfrac{\sqrt{3}}{2}\Rightarrow\left(1\right)\) có 2 nghiệm \(\Rightarrow f'\left(x\right)=0\) có 3 nghiệm