Góc tạo bởi đường thẳng y=3x+1 với trục Ox xấp xỉ bằng.
A. 71 độ
B. 72 độ
C. 73 độ
D. 108 độ
cho hàm số y = ( 2 -m)x + m -1 (1) tìm m biết
a) đồ thị (1) đi qua gốc tọa độ
b) đồ thị của (1) tạo với trục Ox một góc ∂ = 30 độ
c) đồ thị của (1) tạo với trục Ox một góc ∂= 135 độ
d) đường thẳng (1) cắt trục tung tại điểm có tung đọ bằng 4
e) đường thẳng (1) cắt trục hoành tại điểm có hoành đọ bằng (-3)
\(y=\left(2-m\right)x+m-1\)
Có: \(\left\{{}\begin{matrix}a=2-m\\b=m-1\end{matrix}\right.\) (ĐK: \(m\ne2\))
a) Để đồ thị (1) đi qua góc tọa độ thì: \(b=0\)
\(\Rightarrow m-1=0\)
\(\Rightarrow m=1\) (tm)
b) Để đồ thị (1) tạo với trục Ox một góc \(\partial=30^o\) thì
\(a=tan\partial\)
\(\Rightarrow2-m=tan30^o\)
\(\Rightarrow2-m=\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=2-\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow m=\dfrac{6-\sqrt{3}}{3}\left(tm\right)\)
c) Để đồ thị (1) tạo với trục Ox một góc \(\partial=135^o\) thì:
\(a=tan\partial\)
\(\Rightarrow2-m=tan135^o\)
\(\Rightarrow2-m=-1\)
\(\Rightarrow m=2+1\)
\(\Rightarrow m=3\left(tm\right)\)
d) Để đường thẳng (1) cắt trục tung tại điểm có tung độ là 4 thì: (đk: \(m\ne1\) vì nếu bằng 1 thì (1) sẽ đi qua gốc tọa độ)
Ta thay \(x=0\) và \(y=4\) vào (1) ta có:
\(4=\left(2-m\right)+m-1\)
\(\Rightarrow m-1=4\)
\(\Rightarrow m=4+1\)
\(\Rightarrow m=5\left(tm\right)\)
e) Để đường thẳng (1) cắt trục hành tại điểm có hoành độ bằng (-3) thì: (đk: \(m\ne1\))
Ta thay \(x=-3\) và \(y=0\) vào (1) ta có:
\(0=-3\cdot\left(2-m\right)+m-1\)
\(\Rightarrow-6+3m+m-1=0\)
\(\Rightarrow4m-7=0\)
\(\Rightarrow4m=7\)
\(\Rightarrow m=\dfrac{7}{4}\left(tm\right)\)
ĐKXĐ: x ≠ 2
a) Đồ thị của hàm số đi qua gốc tọa độ nên m - 1 = 0
⇔ m = 1 (nhận)
Vậy m = 1 thì đồ thị của hàm số đi qua gốc tọa độ
b) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 30⁰ nên:
tan30⁰ = 2 - m
⇔ 2 - m = √3/3
⇔ m = 2 - √3/3 (nhận)
Vậy m = 2 - √3/3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 30⁰
c) Do đồ thị của hàm số tạo với trục Ox một góc ∂ = 135⁰
⇒ 2 - m = tan135⁰
⇔ 2 - m = -1
⇔ -m = -1 - 2
⇔ m = 3 (nhận)
Vậy m = 3 thì đồ thị của hàm số đã cho tạo với trục Ox một góc 135⁰
d) Do đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4 nên thay x = 0; y = 4 vào (1), ta có:
(2 - m).0 + m - 1 = 4
⇔ m = 4 + 1
⇔ m = 5 (nhận)
Vậy m = 5 thì đường thẳng (1) cắt trục tung tại điểm có tung độ bằng 4
e) Do đường thẳng (1) cắt trục hoành tại điểm có hoành độ bằng -3 nên thay x = -3; y = 0 vào (1) ta có:
(2 - m).(-3) + m - 1 = 0
⇔ -6 + 3m + m - 1 = 0
⇔ 4m - 7 = 0
⇔ 4m = 7
⇔ m = 7/4 (nhận)
Vậy m = 7/4 thì (1) cắt trục hoành tại điểm có hoành độ bằng -3
Cho tam giác ABC cân tại A và có A=72 độ. Khi đó số đo góc B bằng:
A.72 độ | B.54 độ | C.108 độ | D. 56 độ |
a) Vẽ (d) và (d') trên cùng một mặt phẳng tọa độ
b) Gọi N là giao điểm của (d) và (d'). Tìm tọa độ điểm N
c) Tính số đo góc \(\alpha\) tạo bởi đường thẳng (d') với trục Ox
a:
b: Phương trình hoành độ giao điểm là:
4-2x=3x+1
=>-2x-3x=1-4
=>-5x=-3
=>\(x=\dfrac{3}{5}\)
Thay x=3/5 vào y=3x+1, ta được:
\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)
Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)
c: (d'): y=3x+1
=>a=3
\(tan\alpha=a=3\)
=>\(\alpha\simeq71^034'\)
Khi chiếu tia sáng tới SI hợp với gương phẳng một góc 40 độ thì góc tạo bởi tia phản xạ và đường pháp tuyến bằng:
A. 40 độ
B. 50 độ
C. 80 độ
D. 90 độ
\(i=90^o-40^o=50^o\)
\(i=i'\Leftrightarrow i'=50^o\)
\(\Rightarrow\) Chọn đáp án B
Cho tam giác ABC có: góc A=35 độ. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. số đo các góc góc ABC; góc ACB là:
A. góc ABC= 72 độ; góc ACB= 73 độ
B. góc ABC= 73 độ; góc ACB= 72 độ
C. góc ABC= 75 độ; góc ACB= 70 độ
D. góc ABC= 70 độ; góc ACB=75 độ
Vì đường trung trực của `AC` cắt `AB` tại `D.`
`@` Theo tính chất của đường trung trực (điểm nằm trên đường trung trực của `1` đoạn thẳng thì cách `2` đầu mút đoạn thẳng đó)
`-> \text {DA = DC}`
Xét `\Delta ACD`: `\text {DA = DC}`
`-> \Delta ACD` cân tại `D.`
`-> \hat {A} = \hat {ACD}` `(1)`
Vì `\text {CD}` là tia phân giác của $\widehat {ACB} (g$$t)$
`->` $\widehat {ACD} = \widehat {BCD} =$ `1/2` $\widehat {ACB}$ `(2)`
Từ `(1)` và `(2)`
`->` $\widehat {ACB} = \widehat {2C_2} = \widehat {2A}$
Mà `\hat {A}=35^0`
`->` $\widehat {ACB}$`=35^0*2=70^0`
Xét `\Delta ABC`:
$\widehat {BAC} + \widehat {ABC}+ \widehat {ACB}=180^0 (\text {định lý tổng 3 góc trong 1 tam giác})$
`-> 35^0+` $\widehat {ABC} + 70^0=180^0$
`->` $\widehat {ABC}= 180^0-35^0-70^0=75^0$
Xét các đáp án trên `-> C (tm)`.
Cho tam giác ABC có: góc A=35 độ. Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. số đo các góc góc ABC; góc ACB là:
A. góc ABC= 72 độ; góc ACB= 73 độ
B. góc ABC= 73 độ; góc ACB= 72 độ
C. góc ABC= 75 độ; góc ACB= 70 độ
D. góc ABC= 70 độ; góc ACB=75 độ
Tứ giác MNKQ có M = x , N = 2x , K = 0,5x . Q = 1,5x . Vậy số đo góc K bằng :
A : 72 độ
B : 36 độ
C : 144 độ
D : 108 độ
a)Vẽ 2 đồ thị y=2x+2 và y=-x+1 trên cùng 1 hệ trục tọa độ
b)Gọi M là giao điểm củ 2 tọa độ M
c)Tính góc bởi đường thẳng y=x+1 với trục Ox
a:
b: Phương trình hoành độ giao điểm là:
2x+2=-x+1
=>2x+x=1-2
=>3x=-1
=>\(x=-\dfrac{1}{3}\)
Khi x=-1/3 thì \(y=-\left(-\dfrac{1}{3}\right)+1=\dfrac{4}{3}\)
Vậy: \(M\left(-\dfrac{1}{3};\dfrac{4}{3}\right)\)
c: Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+1 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
Chiếu tia tới lên gương phẳng, biết góc phản xạ là 40 độ. Góc tạo bởi tia tới và mặt phẳng gương sẽ là:
A. 40 độ
B. 50 độ
C. 60 độ
D. 90 độ
Chiếu một tia tới lên một gương phẳng. Biết góc phản xạ i’ = 30 độ. Góc tạo bởi tia tới và tia phản xạ là:
A. 30 độ
B. 45 độ
C. 60 độ
D. 15 độ