10+2\(\sqrt{10}\) giải chi tiết giúp mình vs ạ
\(\sqrt{4-\sqrt{10+2\sqrt{5}}}+\sqrt{4+\sqrt{10+2\sqrt{5}}}\)
Giúp mình giải bài này với ạ. Giải chi tiết nhé.
tính giá trị biểu thức
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
giải chi tiết giúp mình nha
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)
\(=\sqrt{\left(\sqrt{7}\right)^2-2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}\right)^2+2.\sqrt{7}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=\sqrt{7}+\sqrt{7}=2\sqrt{7}\)
Ta có: \(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
đặt \(A=\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=>A^2=10-2\sqrt{21}+10+2\sqrt{21}+2\sqrt{\left(10-2\sqrt{21}\right)\left(10+2\sqrt{21}\right)}\)
\(=>A^2=20+2\sqrt{10^2-\left(2\sqrt{21}\right)^2}=20+2\sqrt{16}=20+2.4=28\)
\(=>A=\sqrt{28}=2\sqrt{7}\)
giải phương trình: \(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\) (mn giải chi tiết giúp mình với, mình cảm ơn ạ)
ĐKXĐ: \(0\le x\le9\)
Bình phương 2 vế ta được:
\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)
\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)
Tới đây em tự hoàn thành nốt
f)\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)- \(\dfrac{\sqrt{6}-3}{\sqrt{2}-\sqrt{3}}\)
g)\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0,4}\right)\)
giải chi tiết cụ thể giúp mk với ạ
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\) tính giá trị biểu thức
(giải chi tiết dùm mình,cảm ơn)
\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)
\(=\sqrt{\sqrt{7}^2-2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}+\sqrt{\sqrt{7}^2+2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
\(\sqrt{10-2\sqrt{7}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{3-2\sqrt{7}+7}+\sqrt{3+2\sqrt{21}+7}\)
\(=\sqrt{\sqrt{3}^2-2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}+\sqrt{\sqrt{3}^2+2\sqrt{3}.\sqrt{7}+\sqrt{7}^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{7}\right|+\left|\sqrt{3}+\sqrt{7}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)
1.)\(\sqrt{\left(\sqrt{3}-3\right)^2}\)+\(\sqrt{4-2\sqrt{3}}\)
2)\(\dfrac{1}{\sqrt{5}-2}\) +\(\dfrac{\sqrt{10}-\sqrt{5}}{1-\sqrt{2}}\)
3)\(\dfrac{\sqrt{2}}{\sqrt{3}-1}\) -\(\sqrt{\dfrac{3}{2}}\)
giải chi tiết giúp mk vớiiiii ạ
1)\(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\left|\sqrt{3}-1\right|=3-\sqrt{3}+\sqrt{3}-1=2\)
2: \(=\sqrt{5}+2-\sqrt{5}=2\)
tính giá trị biểu thức
B=\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\) (giải chi tiết dùm mình được ko,cảm ơn)
b) Ta có: \(B=\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
d) Ta có: \(D=\sqrt{x^2-6x+9}-x\)
\(=\left|x-3\right|-x\)
\(=\left[{}\begin{matrix}x-3-x=-3\left(x\ge3\right)\\3-x-x=-2x+3\left(x< 3\right)\end{matrix}\right.\)
giúp mình 2 câu ạ! câu 10 cho mình chi tiết ạ
9 C
II Tự Luận
Câu 10
\(\dfrac{3}{4}\times\dfrac{11}{6}=\dfrac{33}{24}\)
\(3+\dfrac{4}{5}=\dfrac{3}{1}+\dfrac{4}{5}=\dfrac{15}{5}+\dfrac{4}{5}=\dfrac{19}{5}\)
Rút gọn biểu thức sau
P=\(\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\)
giải chi tiết hộ mình vs ạ
\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)
\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)