a) cos4a - sin4a +1 = 2cos2a
b) cos6a + sin6a + 3sin2a.cos2a = 1
a, Tính giá trị biểu thức:
A = cos 2 20 0 + cos 2 4 0 0 + cos 2 5 0 0 + cos 2 7 0 0
b, Rút gọn biểu thức:
B = sin 6 a + cos 6 a + 3 sin 2 a . cos 2 a
Rút gọn
\(A=\left(\frac{1}{cos2x}+1\right).tanx\)
\(B=\frac{1+sin4a-cos4a}{1+sin4a+cos4a}\)
\(C=\frac{sin2a+sina}{1+cos2a+cosa}\)
\(A=\frac{\left(1+cos2x\right)}{cos2x}.tanx=\frac{\left(1+2cos^2x-1\right)}{cos2x}.\frac{sinx}{cosx}=\frac{2cos^2x.sinx}{cos2x.cosx}=\frac{2sinx.cosx}{cos2x}=\frac{sin2x}{cos2x}=tan2x\)
\(B=\frac{1+2sin2a.cos2a-1+2sin^22a}{1+2sin2a.cos2a+2cos^22a-1}=\frac{2sin2a\left(sin2a+cos2a\right)}{2cos2a\left(sin2a+cos2a\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(C=\frac{2sina.cosa+sina}{1+2cos^2a-1+cosa}=\frac{sina\left(2cosa+1\right)}{cosa\left(2cosa+1\right)}=\frac{sina}{cosa}=tana\)
cho a là góc nhọn.Rút gọn biểu thức
A=sin6a +cos6a +3.sin2a.cos2a
\(A=\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\left(sin^2a+cos^2a\right)+3\cdot sin^2a\cdot cos^2a\)
\(=1-3\cdot sin^2a\cdot cos^2a+3\cdot sin^2a\cdot cos^2a\)
=1
Rút gọn các biểu thức sau :
a)\(\dfrac{1+\sin4a-\cos4a}{1+\cos4a+\sin4a}\)
b) \(\dfrac{1+\cos a}{1-\cos a}\tan^2\dfrac{a}{2}-\cos^2a\)
c) \(\dfrac{\cos2x-\sin4x-\cos6x}{\cos2x+\sin4x-\cos6x}\)
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Sin4a/1+cos4a + cos2a/1+cos2a = tana
Đề sai, nói mấy lần rồi bạn ko tin nhỉ? Bạn cho thử a một góc nào đó rồi bấm xem vế trái và vế phải có bằng nhau không?
Thu gọn biểu thức:
A=sin2x+sin4x+sin6x+sin8x
B=\(\frac{sin2a-2sin4a+sin6a}{1+cos2a+cos4a}\)
C=\(\frac{cos5a.cos3a+sin7a.sina}{sin6a+sin2a}\)
Chứng minh
\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)=2cosx
\(\frac{cos4a\cdot tan2a-sin4a}{cos4a\cdot cot2a+sin4a}\)=-tan22a
Giúp mình vs! Mình đang cần gấp :((
tìm a biết a là góc tù và sin4a + cos4a = 5/8
\(sin^4a+cos^4a=\dfrac{5}{8}\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a=\dfrac{5}{8}\)
\(\Leftrightarrow1-2sin^2a\left(1-sin^2a\right)=\dfrac{5}{8}\)
\(\Leftrightarrow2sin^4a-2sin^2a+\dfrac{3}{8}=0\Rightarrow\left[{}\begin{matrix}sin^2a=\dfrac{3}{4}\\sin^2a=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}sina=\dfrac{\sqrt{3}}{2}\\sina=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=150^0\\a=120^0\end{matrix}\right.\)