Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải bpt \(3x^2-x+1>3\sqrt{x^4-x^2+2x-1}\)
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
Giải bpt
\(\dfrac{x+2}{3x+1}\ge\dfrac{x-2}{2x-1}\)
ĐK: \(x\ne\dfrac{1}{2};x\ne-\dfrac{1}{3}\)
\(\dfrac{x+2}{3x+1}\ge\dfrac{x-2}{2x-1}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(2x-1\right)-\left(x-2\right)\left(3x+1\right)}{\left(3x+1\right)\left(2x-1\right)}\ge0\)
\(\Leftrightarrow\dfrac{2x^2+3x-2-3x^2+5x+2}{6x^2-x-1}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+8x}{6x^2-x-1}\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+8x\ge0\\6x^2-x-1>0\end{matrix}\right.\left(1\right)\) hoặc \(\left\{{}\begin{matrix}-x^2+8x\le0\\6x^2-x-1< 0\end{matrix}\right.\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}0\le x\le8\\\left[{}\begin{matrix}x>\dfrac{1}{2}\\x< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x\le8\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le0\\x\ge8\end{matrix}\right.\\-\dfrac{1}{3}< x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow-\dfrac{1}{3}< x\le0\)
Vậy ...
giải bpt 2x-x(3x+1)≤15-3x(x+2)
2x-x(3x+1)≤15-3x(x+2)
2x-3x2-x≤15-3x2 -6x
2x-3x2-x+3x2 +6x≤15
7x≤15
x≤15/7
Bài 1 : Giải các pt sau :
c) |2x - 1| = x + 2
Bài 2 : giải các BPT sau :
a) 2( 3x - 1 ) < x + 4
b) 5 -2x/3 + x ≥ x/2 + 1
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
giải BPT sau
a,(4x-1)(x^2+12)(-x+4)>0
b,(2x-1)(5-2x)(1-x)<0
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)
1, Giải BPT sau : 2x + x/2 > x+2/3-1
\(2x+\frac{x}{2}>\frac{x+2}{3}-1\)
\(\Leftrightarrow6\cdot2x+3\cdot x>2\left(2+x\right)-1\cdot6\)
\(\Leftrightarrow12x+3x-4-2x+6>0\)
\(\Leftrightarrow13x+2>0\Leftrightarrow x>-\frac{2}{13}\)
Vậy tập nghiệm của bất phương trình là : S = { \(\frac{-2}{13}\)}
bạn sửa lại giúp mk là S = { x / x> -2/3 } viết sai nhưng chưa sửa kịp mog bạn thông cảm
Giải bpt sau:
|5 - 2x| - 2|x - 1| ≤ 5x + 3
Giải bpt (2x -1 )(x-3)-3x+1 ≤(x-1)(x+3)+x^2 -5
(2x-1)(x-3)-3x+1≤(x-1)(x+3)+x2-5
<=> 2x2-6x-x+3-3x+1≤x2+3x-x-3+x2-5
<=> -12x≤-6
<=>x≥\(\frac{1}{2}\)
Vậy nghiệm của bpt là S=[\(\frac{1}{2}\);+∞)
Giải bpt 3x²+11x+4-4(x+1)√(2x+1)-2(x-1)√x >= 0
Giải bpt √1-2x ≤ √x^2-3