\(y=\frac{X+1}{x-1\frac{ }{ }}+\frac{X-2}{x+2}\frac{ }{ }+\frac{X-3}{x+3}+\frac{X+4}{x-4}=4\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
help me
1) \(\frac{3-7x}{1+x}=\frac{1}{2}\)
2)\(\frac{x+1}{x-2}=\frac{1}{x^2-4}\)
3) \(\frac{y-1}{y-2}-\frac{5}{y+2}=\frac{12}{y^2-4}+1\)
4) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2+1}\)
5) \(1+\frac{1}{x+2}=\frac{12}{8-x^3}\)
6) \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
7) \(\frac{2x}{x+2}-\frac{x}{x-2}=\frac{-4x}{x^2-4}\)
8) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
9) \(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
10) \(\frac{2x-3}{x+2}-\frac{x+2}{x-2}=\frac{2}{x^2-4}\)
11)\(\frac{x-1}{x+2}-\frac{x}{x-2}=\frac{5x-2}{4-x^2}\)
12)\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
bài 1
\(ĐKXĐ:1+x\ne0\Rightarrow x\ne-1\)
\(\frac{3-7x}{1+x}=\frac{1}{2}\Rightarrow2\left(3-7x\right)=1+x\)
\(\Leftrightarrow6-14x=1+x\\
\Leftrightarrow-14x-x=1-6\\
\Leftrightarrow-15x=-5\\
\Leftrightarrow x=\frac{1}{3}\left(N\right)\)
1) tính
a) \(\frac{4}{x+2}+\frac{3}{2-x}+\frac{12}{x^2-4}\)
b) \(x+\frac{x-1}{2}+\frac{x-2}{3}\)
c) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
d) x - 2 - \(\frac{x^2-10}{x+2}\)
e) \(\frac{1}{2x-2y}-\frac{1}{2x+2y}+\frac{y}{y^2-x^2}\)
f) \(\frac{1}{a+1}-\frac{3}{a^3+1}+\frac{3}{a^2-a+1}\)
g) \(\frac{4-2x+x^2}{x+2}-2-x\)
h)\(\frac{1}{x^3-x}-\frac{1}{x^2-x}+\frac{2}{x^2-1}\)
j) \(\frac{1}{2x+3}-\frac{1}{2x-3}+\frac{x-2}{2x^2-x-3}\)
a: \(=\dfrac{4}{x+2}-\dfrac{3}{x-2}+\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{4x-8-3x-6+12}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)
b: \(=\dfrac{6x+3\left(x-1\right)+2\left(x-2\right)}{6}=\dfrac{6x+3x-3+2x-4}{6}=\dfrac{11x-7}{6}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
Rút gọn:
a) \(\frac{x^3+2x^2+1}{4x^2-4}.\frac{x+2}{x^2+1}.\frac{2x^2-2}{x^3+2x^2+1}\)
b)\(\frac{x^4-y^4}{x^2+y^2-2xy}.\frac{x-y}{xy+x^2}\)
c)\(\frac{x^2-9}{x+5}.\frac{2x}{x+3}+\frac{x^2-9}{x+5}.\frac{5-x}{x+3}\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\)
Tính A+B+C
Tìm x,y ϵ Z
a,\(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\)
b,\(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\)
c,\(\frac{x}{4}-\frac{1}{y}=\frac{3}{4}\)
d,\(\frac{x}{8}-\frac{2}{y}=\frac{3}{4}\)
e,\(\frac{x}{4}-\frac{2}{y}=\frac{3}{2}\)
g,\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)
x≠y≠0
Giúp mình với ạ!!! ai trả lời nhanh mình tick luôn nhé
a, \(\frac{2x^2-x}{x^2+x+1}+\frac{x^3-2x^2}{x^2+x+1}+\frac{x-1}{x^2+x+1}\)
b, \(\frac{2x+y}{x\left(y^2-x\right)}-\frac{2x-y}{x\left(y^2-x\right)}\)
c, \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5-2}{x^2-4}\)
d, \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
e, \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
f, \(\frac{3}{x^2+2xy+y^2}+\frac{4}{2xy-x^2-y^2}+\frac{5}{x^2-y^2}\)
\(A,\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x^2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right):\frac{2x+y}{x^2+2xy+y^2}\right]\cdot\frac{x-y}{3}=xy\)
Chứng minh đẳng thức ( tìm x)
mọi người giải dùm mình cảm ơn
a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)
\(=\frac{4x}{\left(x+1\right)^2}\)=VP
b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)
=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)
=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP
c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)
\(=x+y=\)VP
Vậy các đẳng thức được chứng minh
=
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)