\(\sqrt{2x+3}+\sqrt{x+2}\le1\)
Giải pt
giúp mình với ,
giải bất pt
\(\sqrt{4x^2-x-3}\le1-2x\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-\frac{3}{4}\end{matrix}\right.\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow\) BPT vô nghiệm
- Với \(x\le-\frac{3}{4}\) hai vế không âm, bình phương:
\(4x^2-x-3\le\left(1-2x\right)^2\)
\(\Leftrightarrow4x^2-x-3\le4x^2-4x+1\)
\(\Leftrightarrow3x\le4\Rightarrow x\le\frac{4}{3}\)
\(\Rightarrow x\le-\frac{3}{4}\)
Vậy nghiệm của BPT là \(x\le-\frac{3}{4}\)
Giải bất phương trình sau
\(\sqrt{2x+3}+\sqrt{x+2}\le1\)
\(ĐKXĐ:x\ge-\dfrac{3}{2}\)
Bất phương trình tương đương :
\(2x+3+x+2+2\sqrt{\left(2x+3\right)\left(x+2\right)}\le1\)
\(\Leftrightarrow2\sqrt{\left(2x+3\right)\left(x+2\right)}\le-3x-4\)
\(\Leftrightarrow4.\left(2x+3\right)\left(x+2\right)\le\left(-3x-4\right)^2\)
\(\Leftrightarrow4.\left(2x^2+7x+6\right)\le9x^2+16+24x\)
\(\Leftrightarrow x^2-4x-8\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2+2\sqrt{3}\\x\le2-2\sqrt{3}\end{matrix}\right.\). Kết hợp với ĐKXĐ ....
P/s : E không chắc lắm .....
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Giải PT: \(\sqrt{2x+3\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
giải pt ạ
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\)
\(\Leftrightarrow x=15\)
Giải pt:
\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)
`ĐK:x>=2`
`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`
`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`
`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`
`+)sqrt{x-2}=sqrt{x+3}`
`<=>x-2=x+3`
`<=>0=5` vô lý
`+)sqrt{x-1}-1=0`
`<=>x-1=1`
`<=>x=2(tm)`.
Vậy `x=2`.
Giải pt:\(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)
Ta có: \(\sqrt{x^2+2x+3}+\sqrt{x^2+x+2}=2x+2\)
Bình phương 2 vế ta có:
\(2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4\left(x+1\right)^2-x^2-2x-3-x^2-x-2\) (\(x\ge-1\))
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=4x^2+8x+4-2x^2-3x-5\)
\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)\(\Leftrightarrow2\sqrt{\left(x^2+2x+3\right)\left(x^2+x+2\right)}=2x^2+5x-1\)
Bình phương 2 vế, ta được:
\(4\left(x^2+2x+3\right)\left(x^2+x+2\right)=\left(2x^2+5x-1\right)^2\) ( ĐK:\(\left[{}\begin{matrix}x\le\dfrac{-5-\sqrt{33}}{4}\\x\ge\dfrac{-5+\sqrt{33}}{4}\end{matrix}\right.\))
\(\Leftrightarrow4\left(x^4+x^3+2x^2+2x^3+2x^2+4x+3x^2+3x+6\right)=4x^4+20x^3+21x^2-10x+1\)
\(\Leftrightarrow4x^4+4x^3+8x^2+8x^3+8x^2+16x+12x^2+12x+24=4x^4+20x^3+21x^2-10x+1\)\(\Leftrightarrow-8x^3+7x^2+38x+23=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{23}{8}\\x=-1\left(loai\right)\end{matrix}\right.\)
Vậy nghiệm của PT là \(x=\dfrac{23}{8}\)
Đặt \(\sqrt{x^2+2x+3}=a;\sqrt{x^2+x+2}=b\) ĐK : \(a;b>0\)
PT <=> a + b = 2(a2 - b2)
<=> a + b = 2(a - b)(a + b)
<=> (a + b)(2a - 2b - 1) = 0
<=> \(\left[{}\begin{matrix}a+b=0\\2a=2b+1\end{matrix}\right.\Leftrightarrow2a=2b+1\left(\text{vì a ; b > 0}\right)\)
Khi đó \(2\sqrt{x^2+2x+3}=2\sqrt{x^2+x+2}+1\)
\(\Leftrightarrow4\left(x^2+2x+3\right)=4\left(x^2+x+2\right)+4\sqrt{x^2+x+2}+1\)
<=> \(4\sqrt{x^2+x+2}=4x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}16\left(x^2+x+2\right)=16x^2+24x+9\\x\ge-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8x=23\\x\ge-\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow x=\dfrac{23}{8}\)