Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D-low_Beatbox
Xem chi tiết
Ngô Cao Hoàng
7 tháng 3 2021 lúc 20:08

\(5x^2+4x+2x^3+x^4-12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+8x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^3+2x^2+x^2+2x+6x+12\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[x^2+2\times\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+6\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\right]\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vì \(\left(x^2+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\)

\(\Rightarrow\left(x^2+\dfrac{1}{2}\right)^2+\dfrac{23}{4}\) vô nghiệm

Vậy phương trình có tập nghiệm là\(S=\left\{1;-2\right\}\)

肖战Daytoy_1005
7 tháng 3 2021 lúc 20:03

Mình có giải ở câu hỏi trước rồi nhé.

Đỗ Thị Hải Yến
Xem chi tiết
alibaba nguyễn
5 tháng 1 2017 lúc 8:54

Ta có:

(6x+8)(6x+6)(6x+7)2 = 72

Đặt \(6x+7=a\)

\(\Rightarrow\left(a+1\right)\left(a-1\right)a^2=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^4+8a^2\right)+\left(-9a^2-72\right)=0\)

\(\Leftrightarrow\left(a^2+8\right)\left(a^2-9\right)=0\)

Đễ thấy \(a^2+8>0\)

\(\Rightarrow a^2-9=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x+7=3\\6x+7=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=\frac{-5}{3}\end{cases}}\)

nguyen thi lan huong
5 tháng 1 2017 lúc 6:27

(36x^2+84x+48)(36x^2+84x+49)=72 
dat 36x^2+84x+48=a 
phuong trinh da cho co dang 
a(a+1)=72 
a^2+a-72=0 
a=8 hoac a=-9 
a=8=>36x^2+84x+48=8 
=>x=-2/3 hoac x=-5/3 
a=-9=>36x^2+84x+48=-9(vo nghiem)

I was the girl from the...
5 tháng 1 2017 lúc 7:03

Bang 9 nha Do Thi Hai Yen

bbi oi ah yêu eh :>
Xem chi tiết
✎﹏ϯǜทɠ✯廴ěë︵☆
24 tháng 3 2022 lúc 8:37

Hỏi đáp Toán

Minh Quân
Xem chi tiết

TK

Hỏi đáp Toán

Nguyễn Thu Mến
Xem chi tiết
Đạt
3 tháng 8 2016 lúc 17:01

Đặt \(x^2-6x=t\)

Ta có: \(\frac{21}{t}-t+4=0\Leftrightarrow t^2-4t-21=0\\ \Rightarrow\left(t-7\right)\left(t+3\right)=0\\ \Leftrightarrow\orbr{\begin{cases}t=7\\t=-3\end{cases}}\)

\(t=7\Rightarrow x^2-6x-7=0\Rightarrow\orbr{\begin{cases}x=7\\x=-1\end{cases}}\)

\(t=3\Rightarrow x^2-6x-3=0\Rightarrow\orbr{\begin{cases}x=3-\sqrt{12}\\x=3+\sqrt{12}\end{cases}}\)

alibaba nguyễn
3 tháng 8 2016 lúc 17:10
Có người làm rồi kìa
Nguyễn thuỳ dương
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 7 2022 lúc 11:16

<=> x4+3x3+x2+3x3+9x2+3x+x2+3x+1=0

<=>x2(x2+3x+1)+3x(x2+3x+1)+(x2+3x+1)=0

<=> (x2+3x+1)(x2+3x+1)=0

<=>(x2+3x+1)2=0 => x2+3x+1=0 Giải PT bậc 2 để tìm x, bạn tự làm nốt nhé

Lê Song Phương
Xem chi tiết
missing you =
10 tháng 5 2022 lúc 20:08

\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)

\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)

\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)

\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)

CandyK
Xem chi tiết
Nishimiya shouko
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 10 2021 lúc 21:36

\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)

\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)

Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)

\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)

\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)

\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)

\(\Leftrightarrow...\)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 4 2023 lúc 9:21

Đặt \(\sqrt{2x^3+7}=a\)

=>6ax=3a^2+1+2x-4a

=>a=2x+1 hoặc a=1/3

=>2x^3+7=(2x+1)^2 hoặc 2x^3+7=1/3

=>\(x\in\left\{1;\dfrac{1-\sqrt{13}}{2};\sqrt[3]{-\dfrac{31}{9}}\right\}\)