A=\(\dfrac{\sqrt{X}+1}{\sqrt{X}-1}\)
Timf x nguyên để A nguyên
cho biểu thức \(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
a, rút gon A
b,Tìm x để A = -2
c,Tìm x nguyên để A cũng là số nguyên
a: Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}-1\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-4-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-1\)
\(=\dfrac{x-2\sqrt{x}-x+1}{x-1}\)
\(=\dfrac{-2\sqrt{x}+1}{x-1}\)
4.A=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\): \(\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
a) Rút gọn A
b)Tìm x nguyên để A có giá trị nguyên
a. \(A=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right):\dfrac{2\left(\sqrt{x}-1\right)^2}{x-1}\)
\(=\left(\dfrac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)-\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-\left(x^2\sqrt{x}-x^2+x-\sqrt{x}\right)}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\left(\dfrac{x^2\sqrt{x}+x^2-x-\sqrt{x}-x^2\sqrt{x}+x^2-x+\sqrt{x}}{x^2-x}\right).\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x^2-2x}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2\left(x^2-x\right)}{x^2-x}.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}\)
\(=2.\dfrac{x-1}{2\left(\sqrt{x}-1\right)^2}=\dfrac{x-1}{\left(\sqrt{x}-1\right)^2}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b. \(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)
Để A có giá trị nguyên \(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\in Z\) \(\Leftrightarrow2⋮\left(\sqrt{x}-1\right)\)\(\Leftrightarrow\left(\sqrt{x}-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Leftrightarrow\sqrt{x}\in\left\{2;0;3;-1\right\}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}\in\left\{2;0;3\right\}\Leftrightarrow x\in\left\{4;0;9\right\}\)
Vậy để A có giá trị nguyên thì \(x\in\left\{4;0;9\right\}\)
A=\(\dfrac{2x+9\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a)rút gọn
b)tìm giá trị nguyên của x để A CÓ GIÁ TRỊ NGUYÊN
A=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{1-\sqrt{x}}-\dfrac{2}{x-1}\right):\dfrac{-2}{\sqrt{x}+1}\)
với x>=0; x khác 1
a) Rút gọn A
b) tìm giá trị nguyên của x để A có giá trị nguyên
a)A=\(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{-2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{-2}\)
=\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)
b)Ta có A = \(\dfrac{2\sqrt{x}+1}{\sqrt{x}-1}\)=2+\(\dfrac{2}{\sqrt{x}-1}\)
Để A nguyên thì \(\sqrt{x}-1\)∈Ư(2)
⇒x∈{4;0;9}
\(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}-1\)
a, tìm ĐKXĐ và rút gọn biểu thức đã cho
b, Timf điều kiện của x để P<0
a) \(ĐK:x\ge0,x\ne1\)
\(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)
b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)
Kết hợp với đk:
\(\Rightarrow0\le x< 1\)
cho biểu thức A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)với x≥0,x≠1
a)rút gọn A
b)tìm x nguyên để M =A.\(\dfrac{\sqrt{x}+2}{2\sqrt{x}+1}+\dfrac{x-\sqrt{x}-5}{\sqrt{x}+3}\)có giá trị nguyên
a: \(A=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}=\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(\dfrac{2x-\sqrt{9x}-3}{x+\sqrt{x}-2}\)-\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)-\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)=A
Tìm giá trị nguyên của x để có A nguyên
\(\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)
a) Rút gọn P. b) Tìm x để P = 1. c) Tìm x nguyên để P nguyên
\(a,P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{2}=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\\ b,P=1\Leftrightarrow\sqrt{x}+1=2\sqrt{x}\\ \Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\\ c,P=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\in Z\\ \Leftrightarrow\sqrt{x}+1⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}+2⋮2\sqrt{x}\\ \Leftrightarrow2\sqrt{x}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}=1\left(\sqrt{x}>0\right)\\ \Leftrightarrow x=1\)
\(\left(\dfrac{1}{x+\sqrt{x}}\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2}{\sqrt{x}+1}\)
a) Rút gọn P. b) Tìm x để P = 1. c) Tìm x nguyên để P nguyên
Biểu thức thiếu dấu. Bạn coi lại.
Lời giải:
a. ĐKXĐ: $x>0$
\(P=\left(\frac{1}{\sqrt{x}(\sqrt{x}+1)}+\frac{\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}\right):\frac{2}{\sqrt{x}+1}=\frac{1+\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
b. \(P=1\Leftrightarrow \frac{\sqrt{x}+1}{2\sqrt{x}}=1\Leftrightarrow \sqrt{x}+1=2\sqrt{x}\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1\) (tm)
c.
\(\frac{\sqrt{x}+1}{2\sqrt{x}}\in\mathbb{Z}\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}}\in\mathbb{Z}\)
\(\Leftrightarrow 1+\frac{1}{\sqrt{x}}\in\mathbb{Z}\Leftrightarrow \frac{1}{\sqrt{x}}\in\mathbb{Z}\)
Với $x$ nguyên thì \(\Rightarrow \sqrt{x}\) là ước của $1$
$\Rightarrow \sqrt{x}\in \left\{1\right\}$
$\Rightarrow x\in\left\{1\right\}$
Thử lại thấy thỏa mãn. Vậy $x=1$