Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trắng Bé
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 22:27

\(I=\dfrac{1}{2}\int f\left(x^2\right)d\left(x^2\right)=\dfrac{1}{2}x^2\sqrt{\left(x^2\right)^2+1}+C=\dfrac{1}{2}x^2\sqrt{x^4+1}+C\)

Hoàng Tử Hà
27 tháng 2 2021 lúc 23:31

undefined

Làm tiếp

\(t=\sqrt{x^4+1}\Rightarrow dt=\dfrac{1}{2}.\left(x^4+1\right)^{-\dfrac{1}{2}}.4.x^3=\dfrac{2x^3}{\sqrt{x^4+1}}dx\Rightarrow dx=\dfrac{1}{2}.\dfrac{\sqrt{x^4+1}dt}{x^3}dt\)

\(\Rightarrow\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}dx=\dfrac{1}{2}\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}.\dfrac{\sqrt{x^4+1}}{x^3}dt=\dfrac{1}{2}\int\dfrac{2x^4+1}{x^2}dt=\dfrac{1}{2}\int2x^2dt+\dfrac{1}{2}\int\dfrac{dt}{x^2}=\int\sqrt{t^2-1}dt+\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}\)

Tất cả đã về dạng cơ bản

Xet \(I_1=\int\sqrt{t^2-1}dt\)

\(\sqrt{t^2-1}=\dfrac{1}{2}.\dfrac{2t^2-1}{\sqrt{t^2-1}}-\dfrac{1}{2\sqrt{t^2-1}}=\dfrac{1}{2}\left(\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\right)-\dfrac{1}{2\sqrt{t^2-1}}\)

\(\left(t\sqrt{t^2-1}\right)'=\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\)

\(\Rightarrow\int\sqrt{t^2-1}dt=\dfrac{1}{2}\int\left(t\sqrt{t^2-1}\right)'dt-\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}=\dfrac{1}{2}\left(t\sqrt{t^2-1}\right)-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+C\)

\(\Rightarrow I=\dfrac{1}{2}t\sqrt{t^2-1}-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|=\dfrac{1}{2}t\sqrt{t^2-1}=\dfrac{1}{2}.x^2\sqrt{x^4+1}+C\)

Hoàng Tử Hà
27 tháng 2 2021 lúc 23:38

Một cách làm khác đến từ vị trí của dân chuyên Toán :v Hãi hơn cái cách mình làm bao nhiêu ra. À bạn ấy làm từ cái tính nguyên hàm \(\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}dx\) trở đi nhá!

undefined

undefined

Phan thu trang
Xem chi tiết
Akai Haruma
8 tháng 2 2017 lúc 21:25

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

Akai Haruma
8 tháng 2 2017 lúc 23:38

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

Akai Haruma
9 tháng 2 2017 lúc 0:58

Câu 6)

\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)

Câu 8)

\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)

\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\) ta có:

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)

\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)

\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)

Sách Giáo Khoa
Xem chi tiết
Hai Binh
11 tháng 4 2017 lúc 18:42

Giải bài 4 trang 126 sgk Giải tích 12 | Để học tốt Toán 12

Tô Cường
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2020 lúc 23:56

a/ Tích phân này làm sao giải được nhỉ?

b/ Đặt \(\sqrt{x}=t\Rightarrow x=t^2\Rightarrow dx=2t.dt\)

\(I=\int\frac{2t^2.dt}{4-t^4}=\int\left(\frac{1}{2-t^2}-\frac{1}{2+t^2}\right)dt=\frac{1}{2\sqrt{2}}ln\left|\frac{\sqrt{2}+t}{\sqrt{2}-t}\right|+\frac{1}{\sqrt{2}}arctan\frac{\sqrt{2}}{t}+C\)

\(=\frac{1}{2\sqrt{2}}ln\left|\frac{\sqrt{2}+\sqrt{x}}{\sqrt{2}-\sqrt{x}}\right|+\frac{1}{\sqrt{2}}arctan\frac{\sqrt{2}}{\sqrt{x}}+C\)

c/ \(I=\int\frac{\sqrt{1+x^2}}{x^2}.xdx\)

Đặt \(\sqrt{1+x^2}=t\Rightarrow x^2=t^2-1\Rightarrow xdx=tdt\)

\(\Rightarrow I=\int\frac{t^2dt}{t^2-1}=\int\left(1+\frac{1}{t^2-1}\right)dt=t+ln\left|\frac{t-1}{t+1}\right|+C=\sqrt{1+x^2}+ln\left|\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1}\right|+C\)

d/ Con nguyên hàm này cũng không tính được, chắc bạn ghi nhầm đề

Khách vãng lai đã xóa
Phan thu trang
Xem chi tiết
Nguyễn Hoàng Việt
27 tháng 12 2016 lúc 16:10

1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)

\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)

Có:

\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)

Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)

Nguyễn Hoàng Việt
27 tháng 12 2016 lúc 16:17

3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)

\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)

\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)

Nguyễn Hoàng Việt
27 tháng 12 2016 lúc 16:23

5) Đặt \(\frac{2+x}{2-x}=4t^3\Leftrightarrow4t^3=\frac{4}{2-x}-1\)

\(d\left(4t^3\right)=d\left(\frac{4}{2-x}-1\right)\Leftrightarrow3t^2dt=\frac{1}{\left(2-x\right)^2}dx\)

\(I_5=\int\frac{3t^2}{t\sqrt[3]{4}}dt=\frac{3}{\sqrt[3]{4}}\int tdt=...\)

Sách Giáo Khoa
Xem chi tiết
Đặng Minh Quân
Xem chi tiết
Hoa Thiên Lý
18 tháng 3 2016 lúc 22:05

a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)

Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)

                \(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)

Trở về biến x, thu được :

\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)

 

b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)

 

c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)

Đặt \(x-\frac{1}{x}=t\)

\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)

                           \(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)

 

Say You Do
18 tháng 3 2016 lúc 21:56

Chịu thôi khó quá.

Sugar Coffee
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 1 2022 lúc 23:11

\(I=\int\dfrac{dx}{\sqrt{\left(x+\dfrac{3}{2}\right)^2+\dfrac{1}{4}}}\)

Đặt \(x+\dfrac{3}{2}=\dfrac{1}{2}tanu\Rightarrow dx=\dfrac{1}{2cos^2u}du\)

\(I=\int\dfrac{1}{\dfrac{1}{2}\sqrt{tan^2u+1}}.\dfrac{1}{2.cos^2u}du=\int\dfrac{1}{cosu}du=\int\dfrac{1}{1-sin^2u}d\left(sinu\right)\)

\(=\dfrac{1}{2}ln\left|\dfrac{1+sinu}{1-sinu}\right|+C=ln\left(\dfrac{1+sinu}{cosu}\right)+C=ln\left(\dfrac{1}{cosu}+tanu\right)+C\)

Chú ý: \(\dfrac{1}{cosu}=\sqrt{\dfrac{1}{cos^2u}}=\sqrt{1+tan^2u}=\sqrt{1+\left(2x+3\right)^2}=2\sqrt{x^2+3x+2}\)

Do đó: \(I=ln\left(2x+3+2\sqrt{x^2+3x+2}\right)+C\)

Nguyễn Việt Lâm
11 tháng 1 2022 lúc 23:48

Ủa giờ mới để ý tách biểu thức sai, \(x^2+3x+2=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\) mới đúng

Vậy làm cách khác:

Đặt \(\sqrt{\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}}=-\left(x+\dfrac{3}{2}\right)+t\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-2t\left(x+\dfrac{3}{2}\right)+t^2\)

\(\Rightarrow x+\dfrac{3}{2}=\dfrac{\dfrac{1}{4}+t^2}{2t}=\dfrac{1}{8t}+\dfrac{t}{2}\)

\(\Rightarrow dx=\left(-\dfrac{1}{8t^2}+\dfrac{1}{2}\right)dt=\left(\dfrac{4t^2-1}{8t^2}\right)dt\)

Lại có: \(\sqrt{x^2+3x+2}=-\left(x+\dfrac{3}{2}\right)+t=-\dfrac{1}{8t}-\dfrac{t}{2}+t=\dfrac{t}{2}-\dfrac{1}{8t}=\dfrac{4t^2-1}{8t}\)

\(\Rightarrow\dfrac{1}{\sqrt{x^2+3x+2}}=\dfrac{8t}{4t^2-1}\)

Do đó:

\(I=\int\dfrac{8t}{4t^2-1}.\dfrac{4t^2-1}{8t^2}=\int\dfrac{1}{t}dt=ln\left|t\right|+C\)

\(=ln\left|\sqrt{x^2+3x+2}+\left(x+\dfrac{3}{2}\right)\right|+C=ln\left|2\sqrt{x^2+3x+2}+2x+3\right|+C\)

Lần này chắc ko nhầm nữa :D

Trần Thị Hằng
Xem chi tiết
Trần Thị Hằng
29 tháng 11 2019 lúc 19:03
https://i.imgur.com/Pe6vPSJ.jpg
Khách vãng lai đã xóa